Inventiones mathematicae

, Volume 64, Issue 2, pp 175–198 | Cite as

Values ofL-series of modular forms at the center of the critical strip

  • W. Kohnen
  • D. Zagier


Modular Form Critical Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, H.: Sums involving the values at negative integers ofL functions of quadratic characters. Math. Ann.217, 277–285 (1975)Google Scholar
  2. 2.
    Goldfeld, D., Viola, C.: Mean values ofL-functions associated to elliptic, Fermat and other curves at the center of the critical strip. J. of Number Theory11, 309–320 (1979)Google Scholar
  3. 3.
    Gross, B., Zagier, D.: On the critical values of HeckeL-series. Soc. Math. de France, Mémoire No 2, 49–54 (1980)Google Scholar
  4. 4.
    Kohnen, W.: Modular forms of half-integral weight onΓ0(4). Math. Ann.248, 249–266 (1980)Google Scholar
  5. 5.
    Kohnen, W.: Beziehungen zwischen Modulformen halbganzen Gewichts und Modulformen ganzen Gewichts. Bonner Mathematische Schriften 131, Bonn 1981Google Scholar
  6. 6.
    Manin, Y.: Periods of parabolic forms andp-adic Hecke series. Math. USSR Sbornik21, 371–393 (1973)Google Scholar
  7. 7.
    Niwa, S.: Modular forms of half-integral weight and the integral of certain theta-functions. Nagoya Math. J.56, 147–161 (1974)Google Scholar
  8. 8.
    Niwa, S.: On Shimura's trace formula. Nagoya Math. J.66, 183–202 (1977)Google Scholar
  9. 9.
    Oda, T.: On modular forms associated with indefinite quadratic forms of signature (2,n−2). Math. Ann.231, 97–144 (1977)Google Scholar
  10. 10.
    Rallis, S., Schiffmann, G.: Automorphic forms constructed from the Weil representation: holomorphic case. Amer. J. of Math.100, 1049–1122 (1978)Google Scholar
  11. 11.
    Rankin, R.A.: The scalar product of modular forms. Proc. Lond. Math. Soc.2, 198–217 (1972)Google Scholar
  12. 12.
    Razar, M.: Dirichlet series and Eichler cohomology. To appear in Trans. AMSGoogle Scholar
  13. 13.
    Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan11, 291–311 (1959)Google Scholar
  14. 14.
    Shimura, G.: On modular forms of half-integral weight. Ann. of Math.97, 440–481 (1973)Google Scholar
  15. 15.
    Shimura, G.: The special values of the zeta functions associated with cusp forms. Comm. pure and appl. math.29, 783–804 (1976)Google Scholar
  16. 16.
    Shimura, G.: On the periods of modular forms. Math. Ann.229, 211–221 (1977)Google Scholar
  17. 17.
    Shintani, T.: On construction of holomorphic cusp forms of half-integral weight. Nagoya Math. J.58, 83–126 (1975)Google Scholar
  18. 18.
    Vignéras, M.-F.: Séries thêta des formes quadratiques indéfinies. In: Modular Functions of One Variable VI, Springer Lecture Notes 627, pp. 227–239. Berlin-Heidelberg-New York: Springer-Verlag 1977Google Scholar
  19. 19.
    Vignéras, M.-F.: Valeur au centre de symétrie des fonctionsL associées aux formes modulaires. Séminaire Delange-Pisot-Poitou, 1980Google Scholar
  20. 20.
    Waldspurger, J.L.: Correspondances de Shimura et Shintani. J. Math. pures et appl.59, 1–133 (1980)Google Scholar
  21. 21.
    Waldspurger, J.L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. To appear in J. Math. pures et appl.Google Scholar
  22. 22.
    Zagier, D.: Modular forms associated to real quadratic fields. Inv. Math.30, 1–46 (1975)Google Scholar
  23. 23.
    Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular Forms of One Variable VI, Springer Lecture Notes 627, pp. 105–169. Berlin-Heidelberg-New York: Springer-Verlag 1977Google Scholar
  24. 24.
    Zagier, D.: Eisenstein series and the Riemann zeta function. To appear in Proceedings of the International Colloquium on Automorphic Forms, Bombay 1979Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • W. Kohnen
    • 1
  • D. Zagier
    • 1
  1. 1.SFB “Theoretische Mathematik”Universität BonnBonnFederal Republic of Germany

Personalised recommendations