Inventiones mathematicae

, Volume 77, Issue 1, pp 185–198 | Cite as

The characteristic cycles of holonomic systems on a flag manifold

related to the Weyl group algebra
  • M. Kashiwara
  • T. Tanisaki
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann.259, 153–199 (1982)Google Scholar
  2. 2.
    Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra80, 350–382 (1983)Google Scholar
  3. 3.
    Beilinson, A., Bernstein, J.: Localisation deg-modules. Comptes Rendus292A, 15–18 (1981)Google Scholar
  4. 4.
    Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. I. Invent. Math.69, 437–476 (1982)Google Scholar
  5. 5.
    Borho, W., MacPherson, R.: Représentations des groupes de Weyl et homologie d'intersection pour les variétés de nilpotents. Comptes Rendus292, 707–710 (1981)Google Scholar
  6. 6.
    Brylinski, J.-L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981)Google Scholar
  7. 7.
    Hotta, R.: On Joseph's construction of Weyl group representations; Tohoku Math. J.36, 49–74 (1984)Google Scholar
  8. 8.
    Joseph, A.:W-module structure in the primitive spectrum of the enveloping algebra of a complex semisimple Lie algebra. In: Noncommutative harmonic analysis, Lecture Notes in Math.728, 116–135. Berlin Heidelberg New York: Springer 1979Google Scholar
  9. 9.
    Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra I, II. J. Algebra65, 269–316 (1980)Google Scholar
  10. 10.
    Joseph, A.: On the variety of a highest weight module; to appear in J. AlgebraGoogle Scholar
  11. 11.
    Joseph, A.: On the associated variety of a primitive ideal; preprint (1983)Google Scholar
  12. 12.
    Kashiwara, M.: Index theorem for a maximally overdetermined system of linear differential equations. Proc. Japan Acad.49, 803–804 (1973)Google Scholar
  13. 13.
    Kashiwara, M.: Systems of microdifferential equations. Progress in Mathematics34. Basel: Birkhäuser 1983Google Scholar
  14. 14.
    Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems; preprint (1983), submitted to Publ. RIMS. Kyoto UniversityGoogle Scholar
  15. 15.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979)Google Scholar
  16. 16.
    Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. in Pure Math.36, 185–203 (1980)Google Scholar
  17. 17.
    Kazhdan, D., Lusztig, G.: A topological approach to Springer's representations. Advances in Math.38, 222–228 (1980)Google Scholar
  18. 18.
    Lusztig, G.: A class of irreducible representations of a Weyl group. Proc. Kon. Nederl. Akad.A 82, 323–335 (1979)Google Scholar
  19. 19.
    Lusztig, G., Vogan, D.: Singularities of closures ofK-orbits on flag manifolds. Invent. Math.71, 365–379 (1983)Google Scholar
  20. 20.
    Sabbah, C.: Quelques remarques sur la theorie des classes de Chern des espaces analytiques singuliers; preprint (1983)Google Scholar
  21. 21.
    Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math.36, 173–207 (1976)Google Scholar
  22. 22.
    Springer, T.A.: Quelques applications de la cohomologie d'intersection. Séminaire Bourbaki, expos 589. Astérisque 92–93, 249–273 (1982)Google Scholar
  23. 23.
    Steinberg, R.: Conjugacy classes in algebraic groups. Lecture Notes in Math.366. Berlin Heidelberg New York: Springer 1974Google Scholar
  24. 24.
    Tanisaki, T.: Representation theory of complex semisimple Lie algebras andD. In: Reports of the 5-th seminar on algebra II. 67–163 (1983) (in Japanese)Google Scholar
  25. 25.
    Vogan, D.: Ordering of the primitive spectrum of a semisimple Lie algebra. Math. Ann.248, 195–203 (1980)Google Scholar
  26. 26.
    Hotta, R.: A local formula for Springer's representation; to appear in Advanced Studies in Pure Math.6 Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Kashiwara
    • 1
  • T. Tanisaki
    • 2
  1. 1.R.I.M.S.Kyoto UniversityKyotoJapan
  2. 2.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations