Advertisement

Inventiones mathematicae

, Volume 72, Issue 1, pp 77–129 | Cite as

Intersection homology II

  • Mark Goresky
  • Robert MacPherson
Article

Keywords

Intersection Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: Théorème de finitude pour un morphisme propre: dimension cohomologique des schemas algébriques affines, EGA4, expose XIV. Lecture Notes in Mathematics vol. 305. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  2. 2.
    Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Annals of Mathematics69, 713–717 (1959)Google Scholar
  3. 3.
    Barthel, G., Georinger, G., Duskin, J., Fittler, R., Acuña, H., Gergondey, R., Verdier, J.L., Zisman, M.: Dualité de Poincaré. Séminaire Heidelberg-Strasbourg 1966/67. Publ. I.R.M.A., 5, rue R. Descartes, 67-StrasbourgGoogle Scholar
  4. 4.
    Bredon, G.: Sheaf theory. New York: McGraw-Hill 1967Google Scholar
  5. 5.
    Borel, A.: Seminar on transformation groups. Annals of Mathematics Studies, no. 46, Princeton University Press, Princeton, NJ 1960Google Scholar
  6. 6.
    Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Michigan Math J.7, 137–159 (1960)Google Scholar
  7. 7.
    Borho, W., MacPherson, R.: Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes. C.R. Acad. Sci. Paris, t. 292 Ser. I, 707–710 (1981)Google Scholar
  8. 8.
    Cartan, H., Chevalley, C.: Séminaire de Géometrie Algébrique. Ecole Normale Superieure, Paris 1956Google Scholar
  9. 9.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press, Princeton, NJ 1956Google Scholar
  10. 10.
    Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. In: Geometry of the laplace operator. Proceedings of Symposia in pure Mathematics36, 91–146 (1980). Amer. Math. Soc. Providence, RIGoogle Scholar
  11. 11.
    Cheeger, J., Goresky, M., MacPherson, R.:L 2 Cohomology and intersection homology of singular algebraic varieties. Seminar on differential geometry, Yau, S.T. (ed.) Princeton University Press, Princeton, NJ 1982Google Scholar
  12. 12.
    Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. I.H.E.S.35, 107–126 (1968)Google Scholar
  13. 13.
    Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S.40, 21 (1971)Google Scholar
  14. 14.
    Deligne, P.: Letter to D. Kazhdan and G. Lusztig dated 20 April 1979Google Scholar
  15. 15.
    Fulton, W., MacPherson, R.: Categorical framework for the study of singular spaces. Memoirs of the Amer. Math. Soc. vol. 243 A.M.S., Providence, RI 1981Google Scholar
  16. 16.
    Gelfand, S., MacPherson, R.: Verma modules and Schubert cells: a dictionary, Seminaire d'Algebra. Lecture Notes in Mathematics vol. 924. Berlin-Heidelberg-New York: Springer 1982Google Scholar
  17. 17.
    Godement, R.: Topologie algébrique et théorie des faisceaux. Paris: Hermann, 1958Google Scholar
  18. 18.
    Goresky, M.: Whitney stratified chains and cochains. Trans. Amer. Math. Soc.267, 175–196 (1981)Google Scholar
  19. 19.
    Goresky, M., MacPherson, R.: La dualité de Poincaré pour les espaces singuliers. C.R. Acad. Sci. t.284, (Serie A) 1549–1551 (1977)Google Scholar
  20. 20.
    Goresky, M., MacPherson, R.: Intersection homology theory. Topology19, 135–162 (1980)Google Scholar
  21. 21.
    Goresky, M., MacPherson, R.: Stratified Morse theory. Proceedings of A.M.S. conference in Singularities at Arcata Calif. 1981Google Scholar
  22. 22.
    Hamm, H.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann.191, 235–252 (1971)Google Scholar
  23. 23.
    Hartshorne, R.: Residues and duality. Lecture Notes in Mathematics vol. 20. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  24. 24.
    Hurewicz, W., Wallman, H.: Dimension theory. Princeton University Press, Princeton, NJ 1941Google Scholar
  25. 25.
    Iverson, B.: Cohomology of sheaves, preprint, Aarhus, Denmark (1976)Google Scholar
  26. 26.
    Kato, M.: Partial Poincaré duality fork-regular spaces and complex algebraic sets. Topology16, 33–50 (1977)Google Scholar
  27. 27.
    Kaup, L.: Nachr. Adad. Wiss. Göttingen Math-Phys. Kl.II, 213–224, 1966Google Scholar
  28. 28.
    Kaup, L.: Exakte Sequenzen für globale und lokale Poincaréhomomorphismen. Real and Complex Singularities (P. Holm, ed.) Sitjthoff and Noordhoff Publ., Norway 1978Google Scholar
  29. 29.
    McCrory, C.: Stratified general position. Algebraic and geometric topology. Lecture Notes in Mathematics, vol. 664, pp. 142–146. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  30. 30.
    Mather, J.: Stratifications and mappings. Dynamical systems Peixoto, M.M. (ed.). New York: Academic Press 1973Google Scholar
  31. 31.
    Milnor, J.: Morse theory, Annals of Mathematics Studies no. 51, Princeton University Press (1969), Princeton, New JerseyGoogle Scholar
  32. 32.
    Narasimhan, R.: On the homology groups of Stein Spaces. Invent. Math.2, 377–385 (1967)Google Scholar
  33. 33.
    Ogus, A.: Local cohomological dimension of algebraic varieties. Annals of Mathematics98, 327–366 (1973)Google Scholar
  34. 34.
    Oka, M.: On the cohomology structure of projective varieties, in Manifolds—Tokyo, 1973. Hattori, A. (ed.). University of Tokyo Press, 1975Google Scholar
  35. 35.
    Siegel, P.: Witt spaces, a geometric cycle theory for KO homology at odd primes. Ph.D. thesis (M.I.T.), 1979. (To appear in Amer. J. of Math.)Google Scholar
  36. 36.
    Siebenmann, L.: Deformations of homeomorphisms on stratified sets. Comm. Math. Helvetici47, 123–163 (1972)Google Scholar
  37. 37.
    Steenrod, N.: The topology of fibre bundles. Princeton Mathematical series no. 14, Princeton University Press, Princeton, NJ 1951Google Scholar
  38. 38.
    Swan, R.: The theory of sheaves. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1964Google Scholar
  39. 39.
    Tennison, B.: Sheaf Theory. London Mathematical Society Lecture Note Series vol. 20, Cambridge University Press, 1975Google Scholar
  40. 40.
    Thom, R.: Ensembles et morphismes stratifiés. Bull, Amer. Math. Soc.75, 240–284 (1969)Google Scholar
  41. 41.
    Verdier, J.L.: Le théorème de dualité de Poncaré. C.R. Acad. Sci.256 (1963)Google Scholar
  42. 42.
    Verdier, J.L.: Dualité dans la cohomologie des espaces localment compactes. Séminar Bourbaki vol.300 (1965)Google Scholar
  43. 43.
    Verdier, J.L.: Categories derivées, État 0. SGA 4 1/2. Lecture Notes in Mathematics vol. 569. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  44. 44.
    Verdier, J.L.: Dimension des espaces localement compacts. C.R. Acad. Sci. Paris t.261, 5293–5296 (1965)Google Scholar
  45. 45.
    Verdier, J.L.: Faisceaux constructibles sur un espace localement compact. C.R. Acad. Sci. Paris t.262 (1966)Google Scholar
  46. 46.
    Vilonen, K.: Master's thesis. Brown University, Providence, R.I. (1980)Google Scholar
  47. 47.
    Wilder, R.L.: Topology of manifolds. Amer. Math. Soc. Publ. no.32, Providence, RI (1949)Google Scholar
  48. 48.
    Zeeman, C.: Dihomology I and II. Proc. London Math. Soc. (1)12, 609–638, 639–689 (1962)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Mark Goresky
    • 1
  • Robert MacPherson
    • 2
  1. 1.Department of MathematicsNortheastern UniversityBostonUSA
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations