Inventiones mathematicae

, Volume 72, Issue 1, pp 77–129 | Cite as

Intersection homology II

  • Mark Goresky
  • Robert MacPherson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: Théorème de finitude pour un morphisme propre: dimension cohomologique des schemas algébriques affines, EGA4, expose XIV. Lecture Notes in Mathematics vol. 305. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  2. 2.
    Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Annals of Mathematics69, 713–717 (1959)Google Scholar
  3. 3.
    Barthel, G., Georinger, G., Duskin, J., Fittler, R., Acuña, H., Gergondey, R., Verdier, J.L., Zisman, M.: Dualité de Poincaré. Séminaire Heidelberg-Strasbourg 1966/67. Publ. I.R.M.A., 5, rue R. Descartes, 67-StrasbourgGoogle Scholar
  4. 4.
    Bredon, G.: Sheaf theory. New York: McGraw-Hill 1967Google Scholar
  5. 5.
    Borel, A.: Seminar on transformation groups. Annals of Mathematics Studies, no. 46, Princeton University Press, Princeton, NJ 1960Google Scholar
  6. 6.
    Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Michigan Math J.7, 137–159 (1960)Google Scholar
  7. 7.
    Borho, W., MacPherson, R.: Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes. C.R. Acad. Sci. Paris, t. 292 Ser. I, 707–710 (1981)Google Scholar
  8. 8.
    Cartan, H., Chevalley, C.: Séminaire de Géometrie Algébrique. Ecole Normale Superieure, Paris 1956Google Scholar
  9. 9.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press, Princeton, NJ 1956Google Scholar
  10. 10.
    Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. In: Geometry of the laplace operator. Proceedings of Symposia in pure Mathematics36, 91–146 (1980). Amer. Math. Soc. Providence, RIGoogle Scholar
  11. 11.
    Cheeger, J., Goresky, M., MacPherson, R.:L 2 Cohomology and intersection homology of singular algebraic varieties. Seminar on differential geometry, Yau, S.T. (ed.) Princeton University Press, Princeton, NJ 1982Google Scholar
  12. 12.
    Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. I.H.E.S.35, 107–126 (1968)Google Scholar
  13. 13.
    Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S.40, 21 (1971)Google Scholar
  14. 14.
    Deligne, P.: Letter to D. Kazhdan and G. Lusztig dated 20 April 1979Google Scholar
  15. 15.
    Fulton, W., MacPherson, R.: Categorical framework for the study of singular spaces. Memoirs of the Amer. Math. Soc. vol. 243 A.M.S., Providence, RI 1981Google Scholar
  16. 16.
    Gelfand, S., MacPherson, R.: Verma modules and Schubert cells: a dictionary, Seminaire d'Algebra. Lecture Notes in Mathematics vol. 924. Berlin-Heidelberg-New York: Springer 1982Google Scholar
  17. 17.
    Godement, R.: Topologie algébrique et théorie des faisceaux. Paris: Hermann, 1958Google Scholar
  18. 18.
    Goresky, M.: Whitney stratified chains and cochains. Trans. Amer. Math. Soc.267, 175–196 (1981)Google Scholar
  19. 19.
    Goresky, M., MacPherson, R.: La dualité de Poincaré pour les espaces singuliers. C.R. Acad. Sci. t.284, (Serie A) 1549–1551 (1977)Google Scholar
  20. 20.
    Goresky, M., MacPherson, R.: Intersection homology theory. Topology19, 135–162 (1980)Google Scholar
  21. 21.
    Goresky, M., MacPherson, R.: Stratified Morse theory. Proceedings of A.M.S. conference in Singularities at Arcata Calif. 1981Google Scholar
  22. 22.
    Hamm, H.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann.191, 235–252 (1971)Google Scholar
  23. 23.
    Hartshorne, R.: Residues and duality. Lecture Notes in Mathematics vol. 20. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  24. 24.
    Hurewicz, W., Wallman, H.: Dimension theory. Princeton University Press, Princeton, NJ 1941Google Scholar
  25. 25.
    Iverson, B.: Cohomology of sheaves, preprint, Aarhus, Denmark (1976)Google Scholar
  26. 26.
    Kato, M.: Partial Poincaré duality fork-regular spaces and complex algebraic sets. Topology16, 33–50 (1977)Google Scholar
  27. 27.
    Kaup, L.: Nachr. Adad. Wiss. Göttingen Math-Phys. Kl.II, 213–224, 1966Google Scholar
  28. 28.
    Kaup, L.: Exakte Sequenzen für globale und lokale Poincaréhomomorphismen. Real and Complex Singularities (P. Holm, ed.) Sitjthoff and Noordhoff Publ., Norway 1978Google Scholar
  29. 29.
    McCrory, C.: Stratified general position. Algebraic and geometric topology. Lecture Notes in Mathematics, vol. 664, pp. 142–146. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  30. 30.
    Mather, J.: Stratifications and mappings. Dynamical systems Peixoto, M.M. (ed.). New York: Academic Press 1973Google Scholar
  31. 31.
    Milnor, J.: Morse theory, Annals of Mathematics Studies no. 51, Princeton University Press (1969), Princeton, New JerseyGoogle Scholar
  32. 32.
    Narasimhan, R.: On the homology groups of Stein Spaces. Invent. Math.2, 377–385 (1967)Google Scholar
  33. 33.
    Ogus, A.: Local cohomological dimension of algebraic varieties. Annals of Mathematics98, 327–366 (1973)Google Scholar
  34. 34.
    Oka, M.: On the cohomology structure of projective varieties, in Manifolds—Tokyo, 1973. Hattori, A. (ed.). University of Tokyo Press, 1975Google Scholar
  35. 35.
    Siegel, P.: Witt spaces, a geometric cycle theory for KO homology at odd primes. Ph.D. thesis (M.I.T.), 1979. (To appear in Amer. J. of Math.)Google Scholar
  36. 36.
    Siebenmann, L.: Deformations of homeomorphisms on stratified sets. Comm. Math. Helvetici47, 123–163 (1972)Google Scholar
  37. 37.
    Steenrod, N.: The topology of fibre bundles. Princeton Mathematical series no. 14, Princeton University Press, Princeton, NJ 1951Google Scholar
  38. 38.
    Swan, R.: The theory of sheaves. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1964Google Scholar
  39. 39.
    Tennison, B.: Sheaf Theory. London Mathematical Society Lecture Note Series vol. 20, Cambridge University Press, 1975Google Scholar
  40. 40.
    Thom, R.: Ensembles et morphismes stratifiés. Bull, Amer. Math. Soc.75, 240–284 (1969)Google Scholar
  41. 41.
    Verdier, J.L.: Le théorème de dualité de Poncaré. C.R. Acad. Sci.256 (1963)Google Scholar
  42. 42.
    Verdier, J.L.: Dualité dans la cohomologie des espaces localment compactes. Séminar Bourbaki vol.300 (1965)Google Scholar
  43. 43.
    Verdier, J.L.: Categories derivées, État 0. SGA 4 1/2. Lecture Notes in Mathematics vol. 569. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  44. 44.
    Verdier, J.L.: Dimension des espaces localement compacts. C.R. Acad. Sci. Paris t.261, 5293–5296 (1965)Google Scholar
  45. 45.
    Verdier, J.L.: Faisceaux constructibles sur un espace localement compact. C.R. Acad. Sci. Paris t.262 (1966)Google Scholar
  46. 46.
    Vilonen, K.: Master's thesis. Brown University, Providence, R.I. (1980)Google Scholar
  47. 47.
    Wilder, R.L.: Topology of manifolds. Amer. Math. Soc. Publ. no.32, Providence, RI (1949)Google Scholar
  48. 48.
    Zeeman, C.: Dihomology I and II. Proc. London Math. Soc. (1)12, 609–638, 639–689 (1962)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Mark Goresky
    • 1
  • Robert MacPherson
    • 2
  1. 1.Department of MathematicsNortheastern UniversityBostonUSA
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations