Inventiones mathematicae

, Volume 72, Issue 1, pp 57–75 | Cite as

Characters of irreducible representations of the Lie algebra of vector fields on the circle

  • Alvany Rocha-Caridi
  • Nolan R. Wallach


Vector Field Irreducible Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math.34, 37–76 (1976)Google Scholar
  2. 2.
    Gelfand, I.M.: The cohomology of infinite dimensional Lie algebras; some questions of integral geometry. Actes, Congrès intern. math., 1970, Tome 1, p. 95–111Google Scholar
  3. 3.
    Goncharova L.V.: The cohomologies of Lie algebras of formal vector fields on the line. Functs. Anal. Prilozhen.7, No. 2, 6–14 (1973); No. 3, 33–44 (1973)Google Scholar
  4. 4.
    Jantzen, J.E.: Moduln mit einem höchsten Gewicht. Lecture Notes in Mathematics, vol. 750. Berlin-New-York-Heidelberg: Springer 1979Google Scholar
  5. 5.
    Kac, V.G.: Highest weight representations of infinite-dimensional lie algebras. Proceedings of the International Congress of Mathematicians, Helsinki, 1978Google Scholar
  6. 6.
    Kac, V.G.: Some problems on infinite dimensional Lie algebras and their representations (for AMS meeting at Amherst, 1981). PreprintGoogle Scholar
  7. 7.
    Rocha-Caridi, A.: Resolutions of irreducible highest weight modules over infinite dimensional graded Lie algebras, Proceedings of the 1981 Conference on Lie algebras and related topics. Lecture Notes in Mathematics, Vol. 933 Berlin-Heidelberg-New York: Springer 1982Google Scholar
  8. 8.
    Rocha-Caridi, A., Wallach, N.R.: Projective modules over graded Lie algebras I. Math. Z180, 151–177 (1982)Google Scholar
  9. 9.
    Rocha-Caridi, A., Wallach, N.R.: Highest weight modules over graded lie algebras: Resolutions. Filtrations and character formulas. To appear in the transactions of the A.M.S.Google Scholar
  10. 10.
    Shapovalov, N.N.: On a bilinear form on the universal enveloping algebra of a complex semi-simple Lie algebra. Functional Anal. Appl.6, 307–312 (1972)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Alvany Rocha-Caridi
    • 1
  • Nolan R. Wallach
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BurnswickUSA

Personalised recommendations