Inventiones mathematicae

, Volume 72, Issue 1, pp 1–25

Index for subfactors

  • V. F. R. Jones
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert, P.L.: Théorie de Galois pour uneW *-algèbre. Comment. Math. Helv.39, 411–433 (1976)Google Scholar
  2. 2.
    Baker, B., Powers, R.: Product states andC * dynamical systems of product type. Preprint, University of PennsylvaniaGoogle Scholar
  3. 3.
    Bourbaki, N.: Algèbre, Ch. 8. Hermann 1959.Google Scholar
  4. 4.
    Bratteli, O.: Inductive limits of finite dimensionalC *-algebras. Trans. A.M.S.171, 195–234 (1972)Google Scholar
  5. 5.
    Christensen, E.: Subalgebras of a finite algebra. Math. Ann.243, 17–29 (1979)Google Scholar
  6. 6.
    Connes, A.: Periodic automorphisms of the hyperfinite factor of type II1. Acta Sci. Math.39, 39–66 (1977)Google Scholar
  7. 7.
    Connes, A.: Classification of injective factors. Ann. Math.104, 73–115 (1976)Google Scholar
  8. 8.
    Connes, A.: Sur la théorie non-commutative de l'intégration. In: Algèbres d'opérateurs. Lecture Notes in Mathematics, Vol. 725 Berlin-Heidelberg-New York: Springer 1978Google Scholar
  9. 9.
    Connes, A.: A II1 factor with countable fundamental group. J. Operator Theory4, 151–153 (1980)Google Scholar
  10. 10.
    Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien. Deuxieme édition. Ganthier Villars, 1969Google Scholar
  11. 11.
    Effros, E., Shen, C.-L.:A-F C *-algebras and continued fractions. Indiana Math. J.29, 191–204 (1980)Google Scholar
  12. 12.
    Enomotor, M., Watatani, Y.:C *(Π) and Cuntz algebras from Young diagrams. PreprintGoogle Scholar
  13. 13.
    Feller, W.: Probability theory and its applications. I. Wiley and Sons, Inc. 1957Google Scholar
  14. 14.
    Goldman, M.: On subfactors of factors of type II1. Mich. Math. J.7, 167–172 (1960)Google Scholar
  15. 15.
    Handelman, D.: Notes on orderedK-theory. Vancouver conference on operator algebras (1982)Google Scholar
  16. 16.
    Husemoller, D.: Fibre bundles. Grad. Texts in Math. Vol. 20. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  17. 17.
    Jones, V.: Sur la conjugaison des sous-facteurs des facteur de type II1. C.R. Ac. Sci. Paris t.286, 597–598 (1977)Google Scholar
  18. 18.
    Jones, V.: L'indice des sous-facteurs de facteurs de type II1. C.R. Ac. Sci. Paris t. 286 (1977), 597–598Google Scholar
  19. 19.
    Kadison, R., Fugledge, B.: On a conjecture of Murray and von Neumann. Proc. Natl. Acad. Sci. U.S.37, 420–425 (1951)Google Scholar
  20. 20.
    Murray, F., von Neumann, J.: On rings of operators, II. Trans. A.M.S.41, 208–248 (1937)Google Scholar
  21. 21.
    Murray, F., von Neumann, J.: On rings of operators, IV. Ann. Math.44 716–808 (1943)Google Scholar
  22. 22.
    Ocneanu, A.: Actions of discrete amenable groups on factors. To appear, Springer Lecture notes in Math. Berlin-Heidelberg-New York: SpringerGoogle Scholar
  23. 23.
    Popa, S.: On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors. Invent. Math.65, 269–281 (1981)Google Scholar
  24. 24.
    Skau, C.: Finite subalgebras of a von Neumann algebra. J. Funct. Anal.25, 211–235 (1977)Google Scholar
  25. 25.
    Suzuki, N.: Crossed products of rings of operators. Tohoku Math. J.7, 167–172 (1960)Google Scholar
  26. 26.
    Suzuki, N.: Extensions of rings of operators in Hilbert spaces. Tohoku Math. J.14, 217–232 (1962)Google Scholar
  27. 27.
    Stratila, S., Voiculescu, D.: Representations ofAF algebras and of the groupU(∞). Springer Lecture notes in Math.Google Scholar
  28. 28.
    Takesaki, M.: Theory of operator algebras I. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  29. 29.
    Topping, D.: Lectures on von Neumann algebras. Nostrand Reinhold Math. Studies, 1969Google Scholar
  30. 30.
    Umegaki, H.: Conditional expectation in an operator algebra I. Tohoku Math. J.6, 358–362 (1954)Google Scholar
  31. 31.
    Wasserman, A.: Thesis, University of Pennsylvania, 1981Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • V. F. R. Jones
    • 1
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations