Inventiones mathematicae

, Volume 71, Issue 2, pp 365–379 | Cite as

Singularities of closures ofK-orbits on flag manifolds

  • George Lusztig
  • David A. VoganJr.


Manifold Flag Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beilinson, A., Bernstein, J.: Localisation de g modules. C. R. Acad. Sci. Paris, série I, t.292, 15–18 (1981)Google Scholar
  2. 2.
    Deligne, P.: Theorems de finitude en cohomologiel-adique. In: Cohomologie etale. SGA 4 1/2. Lecture Notes in Math., vol. 569. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  3. 3.
    Deligne, P.: Letter to D. Kazhdan and G. Lusztig, 20 April 1979Google Scholar
  4. 4.
    Deligne, P.: Pureté de la cohomologie de MacPherson-Goresky, d'après un exposé de O. Gabber. I.H.E.S., 1981Google Scholar
  5. 5.
    Goresky, M., MacPherson, R.: Intersection homology theory II. Invent. math. in press (1983)Google Scholar
  6. 6.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. math.53, 165–184 (1979)Google Scholar
  7. 7.
    Kazhdan, D., Lusztig, G.: Schubert varieties and Poincare duality. In: Geometry of the Laplace operator. Proceedings of Symposia in Pure Mathematics XXXVI. American Mathematical Society 1980Google Scholar
  8. 8.
    Verdier, J.L.: A duality theorem in the etale cohomology of schemes. Proceedings of a Conference on local fields. Driebergen. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  9. 9.
    Vogan, D.: Irreducible characters of semisimple Lie groups III. Proof of Kazhdan-Lusztig conjectures in the integral case. Invent. math.Google Scholar
  10. 10.
    Vogan, D.: Irreducible characters of semisimple Lie groups II. The Kazhdan-Lusztig conjectures. Duke Math. J.46, 61–108 (1979)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • George Lusztig
    • 1
  • David A. VoganJr.
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations