Inventiones mathematicae

, Volume 71, Issue 2, pp 339–364 | Cite as

Congruences for special values ofL-functions of elliptic curves with complex multiplication

  • Karl Rubin


Complex Multiplication Elliptic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buhler, J., Gross, B.: Arithmetic on elliptic curves with complex multiplication II. To appearGoogle Scholar
  2. 2.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  3. 3.
    Coates, J., Wiles, A.: Onp-adicL-functions and elliptic units. J. Austral. Math. Soc.26, 1–25 (1978)Google Scholar
  4. 4.
    Damerell, E.:L-functions of elliptic curves with complex multiplication I. Acta Arth.17, 287–301 (1970)Google Scholar
  5. 5.
    Friedman, E.: Ideal class groups in basicZ p1×...×Z ps-extensions of abelian number fields. Invent. Math.65, 425–440 (1982)Google Scholar
  6. 6.
    Goldstein, C., Schappacher, N.: Series d'Eisenstein et fonctionsL de courbes elliptiques à multiplication complexe. J. Reine Angew. Math.372, 184–218 (1981)Google Scholar
  7. 7.
    Gillard, R.: Unités elliptiques et unités cyclotomiques. Math. Ann.243, 181–189 (1979)Google Scholar
  8. 8.
    Gross, B.: Arithmetic on elliptic curves with complex multiplication. Lect. Notes Math. vol. 776 New York: Springer (1980)Google Scholar
  9. 9.
    Gross, B.: On the factorization ofp-adicL-series. Invent. Math.57, 83–95 (1980)Google Scholar
  10. 10.
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Math. Studies, vol. 74. Princeton University Press 1972Google Scholar
  11. 11.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459–571 (1976)Google Scholar
  12. 12.
    Katz, N.: Divisibilities, congruences, and Cartier duality. J. Fac. Sci. Univ. Tokyo (Sec 1a)28, 667–678 (1982)Google Scholar
  13. 13.
    Robert, G.: Unités elliptiques. Bull. Soc. Math. France Suppl., Memoire36 (1973)Google Scholar
  14. 14.
    Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math.64, 455–470 (1981)Google Scholar
  15. 15.
    Rubin, K., Wiles, A.: Mordell-Weil groups of elliptic curves over cyclotomic fields. To appear in: Proceedings of a Conference on Modern Trends in Number Theory Related to Fermat's Last Theorem. Boston: BirkhäuserGoogle Scholar
  16. 16.
    Serre, J-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968)Google Scholar
  17. 17.
    Shimura, G.: Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan. vol. 11. Tokyo-Princeton 1971Google Scholar
  18. 18.
    Stevens, G.: Arithmetic on Modular Curves. Progress in Math. vol. 20. Boston: Birkhäuser 1982Google Scholar
  19. 19.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable (IV). Lect. Notes Math. vol. 476. New York: Springer 1975Google Scholar
  20. 20.
    Washington, L.: The non-p-part of the class number in a cyclotomicZ p-extension. Invent. Math.49, 87–97 (1978)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations