Inventiones mathematicae

, Volume 71, Issue 2, pp 339–364 | Cite as

Congruences for special values ofL-functions of elliptic curves with complex multiplication

  • Karl Rubin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buhler, J., Gross, B.: Arithmetic on elliptic curves with complex multiplication II. To appearGoogle Scholar
  2. 2.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  3. 3.
    Coates, J., Wiles, A.: Onp-adicL-functions and elliptic units. J. Austral. Math. Soc.26, 1–25 (1978)Google Scholar
  4. 4.
    Damerell, E.:L-functions of elliptic curves with complex multiplication I. Acta Arth.17, 287–301 (1970)Google Scholar
  5. 5.
    Friedman, E.: Ideal class groups in basicZ p1×...×Z ps-extensions of abelian number fields. Invent. Math.65, 425–440 (1982)Google Scholar
  6. 6.
    Goldstein, C., Schappacher, N.: Series d'Eisenstein et fonctionsL de courbes elliptiques à multiplication complexe. J. Reine Angew. Math.372, 184–218 (1981)Google Scholar
  7. 7.
    Gillard, R.: Unités elliptiques et unités cyclotomiques. Math. Ann.243, 181–189 (1979)Google Scholar
  8. 8.
    Gross, B.: Arithmetic on elliptic curves with complex multiplication. Lect. Notes Math. vol. 776 New York: Springer (1980)Google Scholar
  9. 9.
    Gross, B.: On the factorization ofp-adicL-series. Invent. Math.57, 83–95 (1980)Google Scholar
  10. 10.
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Math. Studies, vol. 74. Princeton University Press 1972Google Scholar
  11. 11.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459–571 (1976)Google Scholar
  12. 12.
    Katz, N.: Divisibilities, congruences, and Cartier duality. J. Fac. Sci. Univ. Tokyo (Sec 1a)28, 667–678 (1982)Google Scholar
  13. 13.
    Robert, G.: Unités elliptiques. Bull. Soc. Math. France Suppl., Memoire36 (1973)Google Scholar
  14. 14.
    Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math.64, 455–470 (1981)Google Scholar
  15. 15.
    Rubin, K., Wiles, A.: Mordell-Weil groups of elliptic curves over cyclotomic fields. To appear in: Proceedings of a Conference on Modern Trends in Number Theory Related to Fermat's Last Theorem. Boston: BirkhäuserGoogle Scholar
  16. 16.
    Serre, J-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492–517 (1968)Google Scholar
  17. 17.
    Shimura, G.: Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan. vol. 11. Tokyo-Princeton 1971Google Scholar
  18. 18.
    Stevens, G.: Arithmetic on Modular Curves. Progress in Math. vol. 20. Boston: Birkhäuser 1982Google Scholar
  19. 19.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable (IV). Lect. Notes Math. vol. 476. New York: Springer 1975Google Scholar
  20. 20.
    Washington, L.: The non-p-part of the class number in a cyclotomicZ p-extension. Invent. Math.49, 87–97 (1978)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations