Advertisement

Inventiones mathematicae

, Volume 85, Issue 2, pp 379–414 | Cite as

Arithmetic on two dimensional local rings

  • Shuji Saito
Article

Keywords

Local Ring Dimensional Local Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abhyankar, S.: Resolution of singularities for arithmetical surfaces. In: Arithmetical Algebraic Geometry. New York: Harper and Row, 1963, pp. 111–152Google Scholar
  2. 2.
    Artin, M.: Algebraic approximation of structures over complete local rings. Publ. Math. I.H.E.S.36, 23–58 (1969)Google Scholar
  3. 3.
    Stein, M.R., Dennis, R.K.:K 2 of radical ideals and semilocal rings revisited. Lect. Notes Math.342, 281–303 (1973)Google Scholar
  4. 4.
    Gabber, O.: A lecture at I.H.E.S. on March in 1981Google Scholar
  5. 5.
    Greenberg, M.: Rational points in henselian discrete valuation rings. Publ. Math. I.H.E.S.23 (1964)Google Scholar
  6. 6.
    Grothendieck, A.: Le groupe de Brauer III. In: Dix exposé sur la cohomologie des schémas. Amsterdam: North-Holland 1968Google Scholar
  7. 7.
    Illusie, L.: Complexe de De Rham-Witt et cohomologie cristalline. Ann. Sci. Ec. Norm. Sup.12, 501–661 (1979)Google Scholar
  8. 8.
    Kato, K.: A generalization of local class field theory by usingK-groups, I. J. Fac. Sci., Univ. Tokyo, Sec. IA26, 303–376 (1979); II, ibid. Kato, K.: A generalization of local class field theory by usingK-groups, I. J. Fac. Sci., Univ. Tokyo, Sec. IA27, 602–683 (1980); III, ibid. Kato, K.: A generalization of local class field theory by usingK-groups, I. J. Fac. Sci., Univ. Tokyo, Sec. IA29, 31–43 (1982)Google Scholar
  9. 9.
    Kato, K., Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. Math.118, 241–275 (1983)Google Scholar
  10. 10.
    Kato, K., Saito, S.: Global class field theory of arithmetic schemes (Preprint)Google Scholar
  11. 11.
    Lichtenbaum, S.: Duality theorems for curves overp-adic fields. Invent. Math.7, 120–136 (1969)Google Scholar
  12. 12.
    Mercurjev, A.S., Suslin, A.A.:K-cohomology of Severi-Brauer varieties and norm residue homomorphism (Preprint)Google Scholar
  13. 13.
    Saito, S.: Class field theory for two dimensional local rings. (to appear)Google Scholar
  14. 14.
    Saito, S.: Class field theory for curves over local fields. Journal Number Theory21, 44–80 (1985)Google Scholar
  15. 15.
    Serre, J.-P.: Cohomologie galoisienne. Lect. Notes Math.5, 1965Google Scholar
  16. 16.
    Serre, J.-P.: Corps locaux. Paris: Hermann 1962Google Scholar
  17. 17.
    Shafarevich, I.R.: Lectures on minimal models and birational transformations of two dimensional schemes. Tata Institute of Foundamental Research, Bombay, 1966Google Scholar
  18. 18.
    Shatz, S.S.: Cohomology of artinian group schemes over local fields. Ann. Math.79, 411–449 (1964)Google Scholar
  19. 19.
    Tate, J.: WC-groups over ϱ-adic fields. Séminaire Bourbaki; 10e année. 1957/1958Google Scholar
  20. 20.
    Hironaka, H.: Desingularization of excellent surfaces. Lectures at Advanced Science Seminar in Algebraic Geometry. Bowdoin College, Summer 1967, noted by Bruce BennettGoogle Scholar
  21. 21.
    Bourbaki: Algèbre commutative. Chapitre 7. Paris: Hermann 1965Google Scholar
  22. 22.
    Kurke, H., Pfister, G., Popescu, D., Roczen, M., Mostowski, T.: Die Approximationseigenschaft lokaler Ringe. Lect. Notes Math.634, 1978Google Scholar
  23. 23.
    Brown, M.L.: A class of 2-dimensional local rings with Artin's approximation property. The Journal of the London Mathematical Society27 Ser. 2, 29–34 (1983)Google Scholar
  24. 24.
    Pfister, G., Popescu, D.: Die strenge Approximationseigenschaft lokaler Ringe. Invent. Math.30, 947–977 (1979)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Shuji Saito
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations