Inventiones mathematicae

, Volume 89, Issue 2, pp 225–246 | Cite as

On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0

  • Gang Tian
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, T.: Réduction du cas positif de l'equation de Monge-Ampére sur les varietés Kählériennes compactes à la démonstration dúne inégalité. J. Funct. Anal.57, 143–153 (1984)Google Scholar
  2. 2.
    Bombieri, E.: Addendum to my paper, Algebraic values of meromorphic maps. Invent. Math.11, 163–166 (1970)Google Scholar
  3. 3.
    Calabi, E.: The space of Kähler metrics. Proc. Int. Congress Math. Amsterdam2, 206–207 (1954)Google Scholar
  4. 4.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin Heidelberg New York: Springer 1977Google Scholar
  5. 5.
    Griffith, P., Harris, J.: Principles of Algebraic Geometry Wiley, New York, 1978Google Scholar
  6. 6.
    Hömander, L.: An introduction to complex analysis in several variables. Van Nostrand, Princeton, NJ, 1973Google Scholar
  7. 7.
    Croke, C.B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ec. Norm. Super, 4e série13, 419–435 (1980)Google Scholar
  8. 8.
    Li, P.: On the Sobolev constant and thep-spectrum of a compact Riemannian manifold. Ann. Sci. Ec. Norm. Super, 43 série,13, 451–469 (1980)Google Scholar
  9. 9.
    Schoen, R.: Conformation deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geo.20, 479–496 (1984)Google Scholar
  10. 10.
    Scaks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math.113, 1–24 (1981)Google Scholar
  11. 11.
    Skoda, H.: Sous-ensembles analytiques d'ordre fini on infini dans ℂn. Bull. Soc. Math. France,100, 353–408 (1972)Google Scholar
  12. 12.
    Tian, G.: On the existence of solutions of a class of Monge-Ampére equations. Acta. Math. Sinica (to appear)Google Scholar
  13. 13.
    Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation,I *. Commun. Pure Appl. Math.31, 339–411 (1978)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gang Tian
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLa JollaUSA

Personalised recommendations