Inventiones mathematicae

, Volume 63, Issue 3, pp 423–432 | Cite as

Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II

  • A. G. Reyman
  • M. A. Semenov-Tian-Shansky
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. Inventiones math.54, 81–100 (1979)Google Scholar
  2. 2.
    Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of the Korteweg-de Vries type and Abelian varieties. Uspekhi Math. Nauk31, 55–136 (1976) (Russian)Google Scholar
  3. 3.
    Krichever, I.M.: Algebraic curves and nonlinear difference equations. Uspekhi Mat. Nauk34, 215–216 (1978) (Russian)Google Scholar
  4. 4.
    Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math.143, 93–154 (1979)Google Scholar
  5. 5.
    Adler, M., Moerbeke, P.: Completely integrable systems, Kac-Moody Lie algebras and curves. Adv. Math. in press (1981)Google Scholar
  6. 6.
    Gohberg, I.Z., Feldman, I.A.: Convolution equations and projectional methods of their solution. Moscow: “Nauka” 1971 (Russian)Google Scholar
  7. 7.
    Reyman, A.G., Semenov-Tian-Shansky, M.A.: Current algebras and nonlinear partial differntial equations. Doklady AN SSSR251, 1310–1314 (1980) Sov. Math. Doklady (in press)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. G. Reyman
    • 1
  • M. A. Semenov-Tian-Shansky
    • 1
  1. 1.Leningrad Branch of the V.A. Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations