Inventiones mathematicae

, Volume 63, Issue 3, pp 357–402 | Cite as

Finite groups of rank 3. I

  • Michael Aschbacher


Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschbacher, M.: A factorization theorem for 2-constrained groups, to appear in Proc. London Math. Soc.Google Scholar
  2. 2.
    Aschbacher, M.: Some results on pushing up in finite groups, to appear in Math. Zeit.Google Scholar
  3. 3.
    Aschbacher, M.: The uniqueness case for finite groups, preprintGoogle Scholar
  4. 4.
    Aschbacher, M., Gorenstein, D., Lyons, R.: The embedding of 2-locals in finite groups of characteristic 2-type, to appear in Ann. Math.Google Scholar
  5. 5.
    Aschbacher, M., Seitz, G.: Involutions in Chevalley groups over fields of even order. Nagoya Math. J.63, 1–91 (1976)Google Scholar
  6. 6.
    Bloom, D.: The subgroups ofPSL 3(q), for oddq. Trans. Amer. Math. Soc.127, 150–178 (1967)Google Scholar
  7. 7.
    Curtis, C.: Central extensions of groups of Lie type. J. Reine Ang. Math.220, 174–185 (1965)Google Scholar
  8. 8.
    Dickson, L.: Linear Groups. New York: Dover 1958Google Scholar
  9. 9.
    Finkelstein, L., Frohardt, D.: A 3-local characterization ofL 7(2). Trans. AMS250, 181–194 (1979)Google Scholar
  10. 10.
    Finkelstein, L., Frohardt, D.: Standard 2-components of typeS p(6.2), preprintGoogle Scholar
  11. 11.
    Finkelstein, L., Frohardt, D.: in preparationGoogle Scholar
  12. 12.
    Fischer, B.: Finite groups generated by 3-transpositions. Invent. Math.13, 232–246 (1971)Google Scholar
  13. 13.
    Foote, R.: Component type theorems for finite groups in characteristic 2, preprintGoogle Scholar
  14. 14.
    Gorenstein, D., Lyons, R.: Odd standard form in finite groups of characteristic 2-type, preprintGoogle Scholar
  15. 15.
    McLaughlin, J.: Some subgroups ofSL n(F2). Illinois J. Math.13, 108–115 (1969)Google Scholar
  16. 16.
    Mitchell, H.: The subgroups of the quaternary abelian linear group. Trans. AMS15, 379–396 (1914)Google Scholar
  17. 17.
    Phan, K.: On groups generated by special unitary groups. I. J. Australian Math. Soc.23, 67–77 (1977)Google Scholar
  18. 18.
    Seitz, G.: Generation of finite groups of Lie type, preprintGoogle Scholar
  19. 19.
    Solomon, R.: On certain 2-local blocks, preprintGoogle Scholar
  20. 20.
    Thompson, J.: Nonsolvable finite groups all of whose local subgroups are solvable, I. Bull. AMS74, 383–437 (1968)Google Scholar
  21. 21.
    Aschbacher, M., Seitz, G.: On groups with a standard component of known type. Osaka J. Math.13, 439–482 (1976)Google Scholar
  22. 22.
    Jones, W., Parshall, B.: On the 1-cohomology of finite groups of Lie type. Proceedings of the Conference on finite groups. Academic Press, New York, 1976Google Scholar
  23. 23.
    Bender, H.: Über den größtenp'-Normelteiler inp-anfloßbaren Gruppen. Arch. Math.18, 15–16 (1967)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Michael Aschbacher
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations