Inventiones mathematicae

, Volume 97, Issue 2, pp 351–379 | Cite as

The global theory of doubly periodic minimal surfaces

  • William H. MeeksIII
  • Harold Rosenberg


Minimal Surface Global Theory Periodic Minimal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.: Studies in the Microstructure of Microemulsions. PhD thesis, University of Minnesota, June 1986Google Scholar
  2. 2.
    Anderson, D., Henke, C., Hoffman, D., Thomas, E.L.: Periodic area-minimizing surfaces in block copolymers. Nature334, 598–601 (1988)Google Scholar
  3. 3.
    Anderson, M.: Curvature estimates for minimal surfaces. Ann. Sci. Ec. Norm. Super.18, 89–105 (1985)Google Scholar
  4. 4.
    Calabi, E.: Quelque applications de l'Analyse complex aux surfaces d'Aire minima. In: Rossi H. (ed.) Topics in Complex Manifolds, Les Presses de l'Université de Montréal 1968Google Scholar
  5. 5.
    Callahan, M., Hoffman, D., Meeks III, W.H.: Embedded minimal surfaces with an infinite number of ends. Invent. Math.96, 459–505 (1989)Google Scholar
  6. 6.
    Callahan, M., Hoffman, D., Meeks III, W.H.: The structure of singly-periodic minimal surfaces (Preprint)Google Scholar
  7. 7.
    Choi, T., Meeks III, W.H., White, B.: A rigidity theorem for properly embedded minimal surfaces in ℝ3. J. Differ. Geom. (to appear)Google Scholar
  8. 8.
    Douglas, J.: Minimal surfaces of higher topological structure. Ann. Math.40, 205–298 (1939)Google Scholar
  9. 9.
    Frohman, C., Meek III, W.H.: The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in ℝ3 Google Scholar
  10. 10.
    Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in 3-manifolds. Invent. Math.82, 121–132 (1985)Google Scholar
  11. 11.
    Hardt, R., Simon, L.: Boundary regularity and embedded minimal solutions for the oriented Plateau problem. Ann. Math.110, 439–486 (1979)Google Scholar
  12. 12.
    Hoffman, D., Meeks III, W.H.: Properly embedded minimal surfaces of finite topology (Preprint)Google Scholar
  13. 13.
    Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces (Preprint)Google Scholar
  14. 14.
    Hoffman, D., Meeks III, W.H.: A variational approach to the existence of complete minimal surfaces. Duke J. Math.57, 877–898 (1988)Google Scholar
  15. 15.
    Huber, A.: On subharmonic functions and differential geometry in the large. Comm. Math. Helv.32, 181–206 (1957)Google Scholar
  16. 16.
    Jorge, L., Meeks III, W.H.: The topology of complete minimal surfaces of finite total Gaussian curvature. Topology22, 203–221 (1983)Google Scholar
  17. 17.
    Karcher, H.: Embedded minimal surfaces derived from Sherk's examples. Manuscr. Math.62, 83–114 (1988)Google Scholar
  18. 18.
    Langevin, R., Rosenberg, H.: A maximum principle at infinity for minimal surfaces and applications. Duke J. Math.57, 819–828 (1988)Google Scholar
  19. 19.
    Lawson, Jr. H.B.: Lectures on Minimal Submanifolds. Publish or Perish Press, Berkeley 1971Google Scholar
  20. 20.
    Meeks III, W.H.: The theory of triply-periodic minimal surfaces (Preprint)Google Scholar
  21. 21.
    Meeks III, W.H.: The Geometry and the Conformal Structure of Triply-Periodic Minimal Surfaces in ℝ3. PhD thesis, University of California, Berkeley 1975Google Scholar
  22. 22.
    Meeks III, W.H., Rosenberg, H.: The geometry of periodic minimal surfaces in flat 3-manifolds (Preprint)Google Scholar
  23. 23.
    Meeks III, W.H., Rosenberg, H.: The strong maximum principle for minimal surfaces in flat 3-manifolds (Preprint)Google Scholar
  24. 24.
    Meeks III, W.H., White, B.: Minimal surfaces bounded by two convex curves in parallel planes (Preprint)Google Scholar
  25. 25.
    Meeks III, W.H., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179, 151–168 (1982)Google Scholar
  26. 26.
    Meeks III, W.H., Yau, S.T.: The topological uniqueness theorem for complete minimal surfaces of finite type (Preprint)Google Scholar
  27. 27.
    Meeks III, W.H., Yau, S.T.: Topology of three-manifolds and the embedding problems in minimal surface theory. Ann. Math.112, 441–484 (1980)Google Scholar
  28. 28.
    Osserman, R.: Global properties of minimal surfaces inE 3 andE n. Ann. Math.80, 340–64 (1964)Google Scholar
  29. 29.
    Osserman, R.: A Survey of Minimal Surfaces. Dover Publications, New York, 2nd edition 1986Google Scholar
  30. 30.
    Pitts, J., Rubenstein, H.: Existence of Minimal Surfaces of Bounded Topological Type in 3-manifolds. Vol. 10. Australian National University, Canberra, Australia 1978Google Scholar
  31. 31.
    Protter, M., Weinberger, H.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood, NJ 1967Google Scholar
  32. 32.
    Rosenberg, H., Toubiana, E.: Complete minimal surfaces and minimal herissons. J. Differ. Geom.28, 115–132 (1988)Google Scholar
  33. 33.
    Rosenberg, H., Toubiana, E.: A cylindrical type complete minimal surface in a slab of ℝ3. Bull. Sc. Math.III, 241–245 (1987)Google Scholar
  34. 34.
    Schiffman, M.: On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes. Ann. Math.63, 77–90 (1956)Google Scholar
  35. 35.
    Schoen, A.: Infinite Periodic Minimal Surfaces without Self-Intersections. Technical Note D-5541, NASA, Cambridge, Mass., May 1970Google Scholar
  36. 36.
    Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom.18, 791–809 (1983)Google Scholar
  37. 37.
    Simon, L.: Lectures on geometric measure theory. In Proceedings of the Center for Mathematical Analysis. Vol. 3. Australian National University, Canberra, Australia 1983Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • William H. MeeksIII
    • 1
  • Harold Rosenberg
    • 2
  1. 1.Department of MathematicsUniversity of MassachusettsAmherstUSA
  2. 2.Department of MathematicsUniversité de Paris 7ParisFrance

Personalised recommendations