Inventiones mathematicae

, Volume 97, Issue 2, pp 237–255 | Cite as

Singular unitary representations of classical groups

  • Jian-Shu Li


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J.: Discrete spectrum of the dual reductive pair (O(p, q), Sp(2m)). Invent. Math.74, 449–475 (1984)Google Scholar
  2. 2.
    Bruhat, F., Tits, J.: Groupes reductifs sur un corps local, Chapters I, II. Publ. Math. Institu Hautes Etudes Scientifiques41, 5–251 (1972)Google Scholar
  3. 3.
    Casselman, W.: Introduction to the theory of admisssible representation ofp-adic reductive groups (Preprint)Google Scholar
  4. 4.
    Gelbart, S.: Examples of dual reductive pairs. Proc. Symp. Pure Math.33, 287–296 (1979)Google Scholar
  5. 5.
    Howe, R.: ϑ-series and invariant theory. Proc. Symp. Pure Math.33, Am. Math. Soc.: Providence 1979Google Scholar
  6. 6.
    Howe, R.:L 2-duality in the stable range (Preprint)Google Scholar
  7. 7.
    Howe, R.: A notion of rank for unitary representations of classical groups. C.I.M.E. Summer School on Harmonic analysis. Cortona 1980Google Scholar
  8. 8.
    Howe, R.: Small unitary Representations of Classical groups. In: Moore, C.C. (ed.) Group representations, ergodic theory, operator algebras and math. physics. Proceedings of a Conference in honor of C.W. Mackey, M.S.R.I., Publ. No. 6, New York Berlin Heidelberg: Springer 1986, pp. 121–150Google Scholar
  9. 9.
    Harish-Chandra: Invariant eigendistributions on a semi-simple Lie algebra. I.H.E.S.27, 1965Google Scholar
  10. 10.
    Langlands, R.P.: On the classification of irreducible representations of real algebraic groups (Preprint 1973)Google Scholar
  11. 11.
    Li, J.: Theta Series and distinguished representations of Symplectic Groups. Thesis, Yale University 1987Google Scholar
  12. 12.
    Li, J.: Distinguished cusp forms are theta series (Preprint)Google Scholar
  13. 13.
    Mackey, G.: Unitary representations of group extensions. Acta Math.99, 265–301 (1958)Google Scholar
  14. 14.
    Moeglin, C.: Correspondance de Howe pour les paires reductives duales, Quelques Calculs dans le Cas Archimedien (Preprint)Google Scholar
  15. 15.
    Prezbinda, T.: On Howe's duality theorem. J. Funct. Anal. (to appear)Google Scholar
  16. 16.
    Scaramuzzi, R.: A notion of rank for unitary representations of general linear groups. Thesis, Yale University 1985Google Scholar
  17. 17.
    Silberger, A.: The Langlands quotient theorem forp-adic groups. Math. Ann.236, 95–104 (1978)Google Scholar
  18. 18.
    Vogan, D.: Unitary Representations of reductive Lie Groups. Ann. Math. Stud.118, 1987Google Scholar
  19. 19.
    Vogan, D.: Representations of Reductive Lie Group, International Congress of Mathematician, Berkeley, 1986Google Scholar
  20. 20.
    Weil, A.: Sur certains groups d'operateurs unitaires. Acta Math.111, 142–211 (1964)Google Scholar
  21. 21.
    Weil, A.: Sur la formulae de Siegel dans la theorie des groupes classiques. Acta Math.113, 1–87 (1965)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jian-Shu Li
    • 1
  1. 1.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations