Advertisement

Inventiones mathematicae

, Volume 90, Issue 1, pp 11–76 | Cite as

Sur la théorie de Hodge-Deligne

  • V. Navarro Aznar
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Barlet, D.: Contribution du cup-produit de la fibre de Milnor aux pôles de |f|2. Ann. Inst. Fourier, Grenoble,34, (4) 75–107 (1984)Google Scholar
  2. 2.
    Bousfield, A.K., Gugenheim, V.K.A.M.: On PL De Rham theory and rational homotopy type. Mem. Am. Math. Soc.179, 1–94 1976Google Scholar
  3. 3.
    Clemens, C.H.: Degenerations of Kähler manifolds. Duke Math. J.44, 215–290 (1977)Google Scholar
  4. 4.
    Deligne, P.: Comparaison avec la théorie transcendente, Exp. XIV, dans SGA 7 II. Lect. Notes Math., Vol. 340. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  5. 5.
    Deligne, P.: Poids dans la Cohomologie des Variétés Algébriques, Actes du Congrès International des Mathématiciens, Vancouver, 1974, pp. 79–85Google Scholar
  6. 6.
    Deligne, P.: Théorie de Hodge II. Publ. Math., Inst. Hautes Etud. Sci.40, 5–57 (1972)Google Scholar
  7. 7.
    Deligne, P.: Théorie de Hodge III. Publ. Math., Inst. Hautes Etud. Sci.44, 5–77 (1975)Google Scholar
  8. 8.
    Deligne, P.: La conjecture de Weil, II. Publ. Math., Inst. Hautes Etud. Sci.52, 137–252 (1980)Google Scholar
  9. 9.
    Dupont, J.L.: Curvature and characteristic classes. Lect. Notes Math., Vol. 640. Berlin Heidelberg New York: Springer 1978Google Scholar
  10. 10.
    Fujiki, A.: Duality of mixed Hodge structures of algebraic varieties. Publ. Res. Inst. Math. Sci.16, 635–667 (1980)Google Scholar
  11. 11.
    Godement, R.: Topologie algébrique et théorie des faisceaux. Paris: Hermann 1958Google Scholar
  12. 12.
    Griffiths, P.A., Schmid, W.: Recent developments in Hodge theory: A discussion of techniques and results, Proceedings of the International Colloquium on Discrete Subgroups of Lie Groups (Bombay, 1973). Oxford Univ. Press, 1975Google Scholar
  13. 13.
    Grothendieck, A.: On the De Rham cohomology of algebraic varieties. Publ. Math. Inst. Hautes Etud. Sci.29, 96–103 (1966)Google Scholar
  14. 14.
    Guillén, F.: Une relation entre la filtration de Zeeman et la filtration par le poids de Deligne, Compos. Math.61, 201–228 (1987)Google Scholar
  15. 15.
    Guillén, F., Navarro Aznar, V., Puerta, F.: Théorie de Hodge via schemas cubiques, notes polycopiées, Universitat Politècnica de Catalunya, 1982Google Scholar
  16. 16.
    Hain, R.M.: The de Rham homotopy theory of complex algebraic varieties. Preprint, University of Utah, 1984Google Scholar
  17. 17.
    Lê, D.T.: Remarks on relative monodromy, Real and Complex Singularities (Oslo, 1976). Alphen van den Rijn: Sijthoff-Noordhoff, 1977Google Scholar
  18. 18.
    MacLane, S.: Categories for the working mathematician. New York: Springer 1971Google Scholar
  19. 19.
    Morgan, J.W.: The algebraic topology of smooth algebraic varieties. Publ. Math., Inst. Hautes Etud. Sci.48, 137–204 (1978)Google Scholar
  20. 20.
    Pascual Gainza, P.: Contribucions als espais algebraics, tesi doctoral, Universitat Autònoma de Barcelona, Barcelona, 1983Google Scholar
  21. 21.
    Pascual Gainza, P.: On the simple object of a diagram in a closed model category. Math. Proc. Camb. Philos. Soc.100, 459–474 (1986)Google Scholar
  22. 22.
    Quillen, D.G.: Rational homotopy theory. Ann. Math.90, 205–295 (1969)Google Scholar
  23. 23.
    Segal, G.: Classifying spaces and spectral secuences. Publ. Math., Inst. Hautes Etud. Sci.34, 105–112 (1968)Google Scholar
  24. 24.
    Steenbrink, J.H.: Limits of Hodge structures. Invent. Math.31, 229–257 (1976)Google Scholar
  25. 25.
    Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. Real and Complex Singularities (Oslo, 1976). Alphen van den Rijn: Sijthoff-Noordhoff, 1977Google Scholar
  26. 26.
    Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. Proc. Symp. Pure Math.40, (part 2) 513–536 (1983)Google Scholar
  27. 27.
    Steenbrink, J.H.M.: Semicontinuity of the singularity spectrum. Invent. Math.79, 557–565 (1985)Google Scholar
  28. 28.
    Steenbrink, J.H., Zucker, S.: Variation of mixed Hodge structure. I. Invent. Math.80, 489–542 (1985)Google Scholar
  29. 29.
    Sullivan, D.: Infinitesimal computations in topology. Publ. Math., Inst. Hautes Etud. Sci.47, 269–331 (1977)Google Scholar
  30. 30.
    Swan, R.: Thom's theory of differential forms on simplicial sets. Topology44, 271–273 (1975)Google Scholar
  31. 31.
    Thom, R.: Opérations en cohomologie réelle. Exp. 17. Sem. H. Cartan, E.N.S. Paris, 1954–1955Google Scholar
  32. 32.
    Varchenko, A.N.: Asymptotic Hodge structure in the vanishing cohomology. Math. USSR, Izv.18, 469–512 (1982)Google Scholar
  33. 33.
    Whitney, H.: Geometric integration theory. Princenton, Univ. Press, 1957Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • V. Navarro Aznar
    • 1
  1. 1.Departament de Matemàtiques, E.T.S.E.I.B.Universitat Politècnica de CatalunyaBarcelonaEspagne

Personalised recommendations