Inventiones mathematicae

, Volume 65, Issue 2, pp 179–207 | Cite as

Existence of metrics with prescribed Ricci curvature: Local theory

  • Dennis M. DeTurck
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Atiyah, M.: Elliptic Operators and Compact Groups. Lectures Notes in Math., vol.401. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  2. [B] Bourguignon, J.-P.: Ricci Curvature and Einstein Metrics. Global Differential Geometry/Global Analysis Proceedings, Berlin, Nov. 1979. Lecture Notes in Math., vol. 838, p. 42–63. Berlin, Heidelberg, New York, Springer 1981Google Scholar
  3. [Be] Berger, M.: Quelques formules de variation pour une structure Riemannienne, Ann. Sci. Ecole Norm. Sup., 4e série, t.3, 285–294 (1970)Google Scholar
  4. [BE] Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Differential Geometry3, 379–392 (1969)Google Scholar
  5. [BJS] Bers, L., John, F., Schechter, M.: Partial Differential Equations. Wiley-Interscience, 1964Google Scholar
  6. [C] Cartan, E.: Les systèmes différentiels extérieurs et leurs applications géometriques. Paris: Hermann 1945Google Scholar
  7. [D1] DeTurck, D.: The Equation of Prescribed Ricci Curvature. Bull. Amer. Math. Soc.3, 701–704 (1980)Google Scholar
  8. [D2] DeTurck, D.: Metrics with prescribed Ricci curvature. Proceedings of IAS Differential Geometry seminar, 1979–80, to appear in Annals of Math. Study 102Google Scholar
  9. [DK] DeTurck, D., Kazdan, J.: Some regularity theorems in Riemannian geometry. To appear in Ann. Sci. Ecole Norm. Sup.Google Scholar
  10. [G1] Gasqui, J.: Connexions à courbure de Ricci donnée, Math. Z.,168, 167–179 (1979)Google Scholar
  11. [G2] Gasqui, J.: Sur l'existence locale d'immersions à courbure scalaire donnée. Math. Annalen,241, 283–288 (1979)Google Scholar
  12. [G3] Gasqui, J.: Métriques Riemanniennes Ricci-intégrables et resolubilité locale des équations d'Einstein. Preprint, Universite de Grenoble IGoogle Scholar
  13. [Gol] Goldschmidt, H.: Existence theorems for analytic linear partial differential equations. Ann. of Math.86, 246–270 (1967)Google Scholar
  14. [Go2] Goldschmidt, H.: Integrability criteria for systems of non-linear partial differential equations. J. Differential Geometry1, 269–307 (1967)Google Scholar
  15. [GS] Guillemin, V., Sternberg, S.: An algebraic model of transitive differential geometry. Bull. Amer. Math. Soc.70, 16–47 (1964)Google Scholar
  16. [K1] Kazdan, J.: Another proof of Bianchi's identity in Riemannian geometry. Proc. Amer. Math. Soc.,81, 341–342 (1981)Google Scholar
  17. [K2] Kazdan, J.: Gaussian and scalar curvature, an update. Proceedings of IAS Differential Geometry seminar, 1979–80, to appear in Annals of Math Study 102Google Scholar
  18. [K3] Kazdan, J.: Partial Differential Equations. Lecture notes, University of PennsylvaniaGoogle Scholar
  19. [Ku] Kuranishi, M.: Lectures on Involutive Systems of Partial Differential Equations. Lecture notes, Soc. Math. Sao Paulo, 1967Google Scholar
  20. [M1] Malgrange, B.: Sur l'intégrabilité des structures presque-complexes. Symposia Math. vol. II (INDAM, Rome, 1968), New York: Academic Press, London pp. 289–296, 1969Google Scholar
  21. [M2] Malgrange, B.: Equations de Lie II. J. Differential Geometry7, 117–141 (1972)Google Scholar
  22. [Mo] Moser, J.: A new technique for the construction of solutions of nonlinear differential equations. Proc. Natl. Acad. Sci.,47, 1824–1831 (1961)Google Scholar
  23. [MR] Min-Oo, Ruh E.: Comparison theorems for compact symmetric spaces. Ann. Sci. Ecol. Norm. Sup. 4e serie, t.12, 335–353 (1979)Google Scholar
  24. [N] Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Institute Lecture Notes, NYU, 1974Google Scholar
  25. [Na] Nash, J.: The imbedding of Riemannian manifolds. Ann. Math.63, 20–63 (1956)Google Scholar
  26. [S] Singer, I.: Recent applications of index theory for elliptic operators. Proc. Symp. Pure Math., vol. XXIII (Partial Differential Equations), AMS, pp. 11–31, 1976Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Dennis M. DeTurck
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations