Advertisement

Inventiones mathematicae

, Volume 89, Issue 3, pp 527–559 | Cite as

Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication

  • Karl Rubin
Article

Keywords

Complex Multiplication Elliptic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand, D.: Valeurs de fonctions theta et hauteursp-adiques. In: Séminaire de Théorie des Nombres, Paris 1980–81. Prog. Math., vol. 22, pp. 1–12. Boston: Birkhäuser (1982)Google Scholar
  2. 2.
    Birch, B., Swinnerton-Dyer, P.: Notes on elliptic curves II. J. Reine Angew. Math.218, 79–108 (1965)Google Scholar
  3. 3.
    Coates, J.: Infinite descent on elliptic curves. In: Arithmetic and Geometry, papers dedicated to I.R. Shafarevich on the occasion of his 60th birthday. Prog. Math., vol. 35, pp. 107–136. Boston: Birkhäuser (1983)Google Scholar
  4. 4.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  5. 5.
    Coates, J., Wiles, A.: Onp-adicL-functions and elliptic units. J. Aust. Math. Soc.26, 1–25 (1978)Google Scholar
  6. 6.
    de Shalit, E.: The explicit reciprocity law in local class field theory. Duke Math. J.53, 163–176 (1986)Google Scholar
  7. 7.
    de Shalit, E. de: The Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspec. Math. Orlando: Academic Press (1987)Google Scholar
  8. 8.
    Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math.72, 241–265 (1983)Google Scholar
  9. 9.
    Gross, B.: On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. In: Number Theory Related to Fermat's Last Theorem. Prog. math, vol. 26, pp. 219–236. Boston: Birkhäuser (1982)Google Scholar
  10. 10.
    Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)Google Scholar
  11. 11.
    Iwasawa, K.: OnZ l-extensions of algebraic number fields. Ann. Math.98, 246–326 (1973)Google Scholar
  12. 12.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. Math.104, 459–571 (1976)Google Scholar
  13. 13.
    Kubert, D., Lang, S.: Modular Units, Berlin Heidelberg New York: Springer (1981)Google Scholar
  14. 14.
    Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)Google Scholar
  15. 15.
    Perrin-Riou, B.: Points de Heegner et dérivées de fonctionsL p-adiques. Invent. Math. (to appear)Google Scholar
  16. 16.
    Robert, G.: Unités elliptiques. Bull Soc. Math. Fr. Suppl., Mémoire vol. 36 (1973)Google Scholar
  17. 17.
    Rubin, K.: Congruences for special values ofL-functions of elliptic curves with complex multiplication. Invent. Math.71, 339–364 (1983)Google Scholar
  18. 18.
    Rubin, K.: Global units and ideal class groups. Invent. Math.89, 511–526 (1987)Google Scholar
  19. 19.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Forms. Princeton: Princeton University Press (1971)Google Scholar
  20. 20.
    Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Math., vol. 106. Berlin Heidelberg New York: Springer (1986)Google Scholar
  21. 21.
    Stephens, N.: The conjectures of Birch and Swinnerton-Dyer for the curvesX 3+Y 3=DZ 3. J. Reine Angew. Math.231, 121–162 (1968)Google Scholar
  22. 22.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable (IV), Lect. Notes Math., vol. 476. Berlin New York: Springer (1975)Google Scholar
  23. 23.
    Thaine, F.: On the ideal class groups of real abelian number fields. (To appear)Google Scholar
  24. 24.
    Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in Math., vol. 83. Berlin Heidelberg New York: Springer (1982)Google Scholar
  25. 25.
    Weil, A.: Number Theory, an approach through history. Boston: Birkhäuser (1984)Google Scholar
  26. 26.
    Wiles, A.: Higher explicit reciprocity laws. Ann. Math.107, 235–254 (1978)Google Scholar
  27. 27.
    Wintenberger, J-P.: Structure galoisienne de limites projectives d'unités locales. Comp. Math.42, 89–103 (1981)Google Scholar
  28. 28.
    Yager, R.: On two variablep-adicL-functions. Ann. Math.115, 411–449 (1982)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations