Inventiones mathematicae

, Volume 89, Issue 3, pp 527–559

Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication

  • Karl Rubin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand, D.: Valeurs de fonctions theta et hauteursp-adiques. In: Séminaire de Théorie des Nombres, Paris 1980–81. Prog. Math., vol. 22, pp. 1–12. Boston: Birkhäuser (1982)Google Scholar
  2. 2.
    Birch, B., Swinnerton-Dyer, P.: Notes on elliptic curves II. J. Reine Angew. Math.218, 79–108 (1965)Google Scholar
  3. 3.
    Coates, J.: Infinite descent on elliptic curves. In: Arithmetic and Geometry, papers dedicated to I.R. Shafarevich on the occasion of his 60th birthday. Prog. Math., vol. 35, pp. 107–136. Boston: Birkhäuser (1983)Google Scholar
  4. 4.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  5. 5.
    Coates, J., Wiles, A.: Onp-adicL-functions and elliptic units. J. Aust. Math. Soc.26, 1–25 (1978)Google Scholar
  6. 6.
    de Shalit, E.: The explicit reciprocity law in local class field theory. Duke Math. J.53, 163–176 (1986)Google Scholar
  7. 7.
    de Shalit, E. de: The Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspec. Math. Orlando: Academic Press (1987)Google Scholar
  8. 8.
    Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math.72, 241–265 (1983)Google Scholar
  9. 9.
    Gross, B.: On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. In: Number Theory Related to Fermat's Last Theorem. Prog. math, vol. 26, pp. 219–236. Boston: Birkhäuser (1982)Google Scholar
  10. 10.
    Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)Google Scholar
  11. 11.
    Iwasawa, K.: OnZ l-extensions of algebraic number fields. Ann. Math.98, 246–326 (1973)Google Scholar
  12. 12.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. Math.104, 459–571 (1976)Google Scholar
  13. 13.
    Kubert, D., Lang, S.: Modular Units, Berlin Heidelberg New York: Springer (1981)Google Scholar
  14. 14.
    Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)Google Scholar
  15. 15.
    Perrin-Riou, B.: Points de Heegner et dérivées de fonctionsL p-adiques. Invent. Math. (to appear)Google Scholar
  16. 16.
    Robert, G.: Unités elliptiques. Bull Soc. Math. Fr. Suppl., Mémoire vol. 36 (1973)Google Scholar
  17. 17.
    Rubin, K.: Congruences for special values ofL-functions of elliptic curves with complex multiplication. Invent. Math.71, 339–364 (1983)Google Scholar
  18. 18.
    Rubin, K.: Global units and ideal class groups. Invent. Math.89, 511–526 (1987)Google Scholar
  19. 19.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Forms. Princeton: Princeton University Press (1971)Google Scholar
  20. 20.
    Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Math., vol. 106. Berlin Heidelberg New York: Springer (1986)Google Scholar
  21. 21.
    Stephens, N.: The conjectures of Birch and Swinnerton-Dyer for the curvesX 3+Y 3=DZ 3. J. Reine Angew. Math.231, 121–162 (1968)Google Scholar
  22. 22.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable (IV), Lect. Notes Math., vol. 476. Berlin New York: Springer (1975)Google Scholar
  23. 23.
    Thaine, F.: On the ideal class groups of real abelian number fields. (To appear)Google Scholar
  24. 24.
    Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in Math., vol. 83. Berlin Heidelberg New York: Springer (1982)Google Scholar
  25. 25.
    Weil, A.: Number Theory, an approach through history. Boston: Birkhäuser (1984)Google Scholar
  26. 26.
    Wiles, A.: Higher explicit reciprocity laws. Ann. Math.107, 235–254 (1978)Google Scholar
  27. 27.
    Wintenberger, J-P.: Structure galoisienne de limites projectives d'unités locales. Comp. Math.42, 89–103 (1981)Google Scholar
  28. 28.
    Yager, R.: On two variablep-adicL-functions. Ann. Math.115, 411–449 (1982)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations