Inventiones mathematicae

, Volume 89, Issue 3, pp 511–526 | Cite as

Global units and ideal class groups

  • Karl Rubin


Class Group Ideal Class Ideal Class Group Global Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M., Wall, C.: Cohomology of groups. In: Algebraic Number Theory, Cassels, J.W.S., Fröhlich, A. (eds.) p.. 94–115, London: Academic Press 1967Google Scholar
  2. 2.
    Eilenberg, S., Nakayama, T.: On the dimension of modules and algebras, II. Nagoya Math. J.9, 1–16 (1955)Google Scholar
  3. 3.
    Iwasawa, K.: OnZ l-extensions of algebraic nuber fields. Ann. Math.98, 246–326 (1973)Google Scholar
  4. 4.
    Iwasawa, K.: On cohomology groups of units forZ p-extensions. Am. J. Math.105, 189–200 (1983)Google Scholar
  5. 5.
    Kummer, E.: Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke. J. Reine Angew. Math.50, 212–232 (1855)Google Scholar
  6. 6.
    Mazur, B., Wiles, A.: Class fields of abelian extensions ofQ. Invent. Math.76, 179–330 (1984)Google Scholar
  7. 7.
    Rubin, K.: Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication. Invent. Math.89, 527–560 (1987)Google Scholar
  8. 8.
    Tate, J.: Les Conjectures de Stark sur les FonctionsL d'Artin ens=0. Prog. Math.47, Boston: Birkhäuser (1984)Google Scholar
  9. 9.
    Thaine, F.: On the ideal class groups of real abelian extensions ofQ. (To appear)Google Scholar
  10. 10.
    Wintenberger, J.-P.: Structure galoisienne de limites projectives d'unités locales. Comp. Math.42, 89–103 (1981)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations