Inventiones mathematicae

, Volume 79, Issue 2, pp 253–291

Modules of finite projective dimension with negative intersection multiplicities

  • Sankar P. Dutta
  • M. Hochster
  • J. E. McLaughlin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1] Auslander, M.: Modules over unramified regular local rings. Illinois J. Math.5, 631–645 (1961)Google Scholar
  2. [A2] Auslander, M.: Modules over unramified regular local rings. Proc. Intern. Congress of Math. 1962, pp. 230–233Google Scholar
  3. [D1] Dutta, S.P.: Generalized intersection multiplicities of modules. Trans. Amer. Math. Soc.276, 657–669 (1983)Google Scholar
  4. [D2] Dutta, S.P.: Weak linking and multiplicities. J. Pure and Applied Algebra27, 111–130 (1983)Google Scholar
  5. [D3] Dutta, S.P.: Symbolic powers, intersection multiplielty, and asymptotic behavior of Tor. J. London Math. Soc. (2)28, 261–281 (1983)Google Scholar
  6. [D4] Dutta, S.P.: Frobenius and multiplicities. J. of Algebra85, 424–448 (1983)Google Scholar
  7. [D5] Dutta, S.P.: Generalized intersection multiplicities of modules II. Proc. A.M.S. (in press) (1984)Google Scholar
  8. [DHM] Dutta, S.B., Hochster, M., McLaughlin, I.E.: Appendix to “Modules of Finite Projective Dimension with Negative Intersection Multiplicities,” manuscript available from the authorsGoogle Scholar
  9. [E] Eisenbud, D.: Homological algebra on a local complete intersection, with an application to group representations. Trans. Amer. Math. Soc.260, 35–64 (1980)Google Scholar
  10. [F1] Fossum, R.:æ-theory. Preprint Series, Politecnico di Torino, 1977Google Scholar
  11. [F2] Fossum. R.: Correspondence, 1983Google Scholar
  12. [FFI] Fossum, R., Foxby, H.-B., Iversen, B.: Characteristic classes of complexes. Preliminary preprintGoogle Scholar
  13. [H1] Hochster, M.: Cohen-Macaulay modules. Conference on Commutative Algebra. Lecture Notes in Math. Vol. 311, pp. 120–152. Berlin-Heidelberg-New York Springer 1973Google Scholar
  14. [H2] Hochster, M.: Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conference Series in Math., Vol. 24. Amer. Math. Soc., Providence, R.I., 1975Google Scholar
  15. [H3] Hochster, M.: The local homological conjectures. In: Commutative Algebra: Durham 1981. Cambridge Univ. Press, London Math. Soc. Lecture Note Series. Vol. 72, pp. 32–54 (1982)Google Scholar
  16. [H4] Hochster, M.: Euler characteristics over unramified regular local rings. Illinois J. Math. in press (1984)Google Scholar
  17. [L] Lichtenbaum, S.: On the vanishing of Tor in regular local rings. Illinois J. Math.10, 220–226 (1966)Google Scholar
  18. [M] Malliavin-Brameret, M.-P.: Une remarque sur les anneaux locaux réguliers, Sém. Dubreil-Pisot (Algèbre et Théorie des Nombres), 24 année, 1970/71, no 13Google Scholar
  19. [PS1] Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Inst. Hautes Etudes Sci. Publ. Math.42, 323–395 (1973)Google Scholar
  20. [PS2] Peskine, C., Szpiro, L.: Syzygies et multiplicités. C.R. Acad. Sci. Paris Ser. A-B278, 1421–1424 (1974)Google Scholar
  21. [S] Serre, J.P.: Algèbre locale. Multiplicités. Lecture Notes in Math. Vol. 11, 3éme édition. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  22. [W] Weil, A.: Foundations of algebraic geometry. Amer. Math. Soc. Colloq. Publ. Vol. 29, Amer. Math. Soc., Providence, R.I., Revised ed., 1962Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Sankar P. Dutta
    • 1
  • M. Hochster
    • 1
    • 3
  • J. E. McLaughlin
    • 2
  1. 1.The Univesity of PennsylvaniaPhiladelphia
  2. 2.the Institute for Advanced StudyPrincetonUSA
  3. 3.The University of MichiganAnn ArborUSA

Personalised recommendations