Inventiones mathematicae

, Volume 83, Issue 2, pp 265–284 | Cite as

On limit multiplicites of discrete series representations in spaces of automorphic forms

  • Laurent Clozel

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, J.: A Trace Formula for Reductive groups I. Duke Math. J.45, 911–954 (1978)Google Scholar
  2. 2.
    Arthur, J.: A Trace Formula for Reductive groups II. Compos. Math.40, 87–121 (1980)Google Scholar
  3. 3.
    Arthur, J.: Eisenstein series and the Trace Formula. Proc. Symp. Pure Math.33, 1, 253–276 (1979)Google Scholar
  4. 4.
    Arthur, J.: The Trace formula in invariant form. Ann. Math.114, 1–74 (1981)Google Scholar
  5. 5.
    Arthur, J.: A measure on the unipotent variety (Preprint)Google Scholar
  6. 6.
    Arthur, J.: The local behavior of weighted orbital integrals (In preparation)Google Scholar
  7. 7.
    Arthur, J.: A theorem on the Schwartz space of a reductive Lie group. Proc. Natl. Acad. Sci. USA72, 4718–19 (1975)Google Scholar
  8. 8.
    Barbasch, D., Moscovici, H.:L 2-index and the Selberg Trace Formula. J. Funct. Anal.53, 151–201 (1983)Google Scholar
  9. 9.
    Bernstein, J., Deligne, B., Kazhadan, D.: Trace Palew-Wiener Theorem for Reductivep-adic groups. (Preprint)Google Scholar
  10. 10.
    Bernstein, I.N., Zelevinski, A.V.: Induced representations of reductivep-adic groups I. Ann. Sci ENS10, 441–472 (1977)Google Scholar
  11. 11.
    Borel, A.: Regularization theorems in Lie algebra cohomology. Applications. Duke Math. J.50, 605–623 (1983)Google Scholar
  12. 12.
    Borel, A., Casselman, W.:L 2-cohomology of locally symmetric manifolds of finite volume. Duke Math. J.50, 625–647 (1983)Google Scholar
  13. 13.
    Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. Proc. Symp. Pure Math.33, 1, 189–202 (1979)Google Scholar
  14. 14.
    Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Princeton: Princeton University Press 1980Google Scholar
  15. 15.
    Casselman, W.: Introduction to the theory of admissible representations ofp-adic groups. (Mimeographed notes)Google Scholar
  16. 16.
    Clozel, L., Delorme, P.: Sur le théorème de Paley-Wiener invariant pour les groupes réductifs réels. C.R.A.S. Paris (To appear)Google Scholar
  17. 17.
    Clozel, L., Delorme, P.: Pseudo-coefficients et cohomologie des groupes réductifs reels. C.R.A.S. Paris (To appear)Google Scholar
  18. 18.
    Clozel, L., Labesse, J.-P., Langlands, R.P.: Morning seminar on the Trace Formula (mimeographed notes). I.A.S., Princeton 1983–84Google Scholar
  19. 19.
    DeGeorge, D.: On a Theorem of Osborne and Warner. J. Funct. Anal.48, 81–94 (1982)Google Scholar
  20. 20.
    DeGeorge, D., Wallach, N.: Limit formulas for multiplicities inL 2(Γ/G). Ann. Math.107, 133–150 (1978)Google Scholar
  21. 21.
    Gèrardin, P.: Construction de Séries discrètesp-adiques. Lect. Notes462. Berlin Heidelberg New York: Springer 1975Google Scholar
  22. 22.
    Harish-Chandra: Harmonic Analysis in Reductivep-adic groups. Proc. Symp. Pure Math.26, 167–192 (1974)Google Scholar
  23. 23.
    Harish-Chandra: The Plancherel formula for reductivep-adic groups. In: Collected Papers, vol. 4. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  24. 24.
    Harish-Chandra: Harmonic Analysis on Reductivep-adic Groups. Lect. Notes in Mathematics 162. Berlin Heidelberg New York: Springer 1984Google Scholar
  25. 25.
    Henniart, G.: La Conjecture de Langlands locale pourGL (3). Mém. Soc. Math. Fr. (To appear)Google Scholar
  26. 26.
    Kazhdan, D.: Arithmetic varieties and their fields of quasi-definition. Actes Cong. Intern. Math.2, 321–325 (1970)Google Scholar
  27. 27.
    Kazhdan, D.: On Arithmetic varieties II. Isr. J. Math.44, 139–159 (1983)Google Scholar
  28. 28.
    Labesse, J.P.: La formule des traces d'Arthur-Selberg. Seminaire Bourbaki, no. 636 (1984–85)Google Scholar
  29. 29.
    Mischenko, P.: Invariant tempered distributions on the reductive groupGL(n, F p). Thesis, Toronto 1982Google Scholar
  30. 30.
    Osborne, M.S., Warner, G.: The theory of Eisenstein systems. New York: Academic Press 1981Google Scholar
  31. 31.
    Rogawski, J.: Representations ofGL(n) and division algebras over ap-adic field. Duke Math. J.50, 161, 196 (1983)Google Scholar
  32. 32.
    Silberger, A.J.: The Langlands Quotient Theorem forp-adic Groups. Math. Ann.236, 95–104 (1978)Google Scholar
  33. 33.
    Varadarajan, V.S.: Harmonic Analysis on Real Reductive Groups. Lecture Notes in Mathematics 576. Berlin Heidelberg New York: Springer 1977Google Scholar
  34. 34.
    Wallach, N.R.: On the Constant term of a square-integrable automorphic form. Proceedings of the Neptun Conference on Operator algebras and Group representations 1980Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Laurent Clozel
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations