Inventiones mathematicae

, Volume 83, Issue 2, pp 265–284 | Cite as

On limit multiplicites of discrete series representations in spaces of automorphic forms

  • Laurent Clozel


Series Representation Automorphic Form Discrete Series Discrete Series Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arthur, J.: A Trace Formula for Reductive groups I. Duke Math. J.45, 911–954 (1978)Google Scholar
  2. 2.
    Arthur, J.: A Trace Formula for Reductive groups II. Compos. Math.40, 87–121 (1980)Google Scholar
  3. 3.
    Arthur, J.: Eisenstein series and the Trace Formula. Proc. Symp. Pure Math.33, 1, 253–276 (1979)Google Scholar
  4. 4.
    Arthur, J.: The Trace formula in invariant form. Ann. Math.114, 1–74 (1981)Google Scholar
  5. 5.
    Arthur, J.: A measure on the unipotent variety (Preprint)Google Scholar
  6. 6.
    Arthur, J.: The local behavior of weighted orbital integrals (In preparation)Google Scholar
  7. 7.
    Arthur, J.: A theorem on the Schwartz space of a reductive Lie group. Proc. Natl. Acad. Sci. USA72, 4718–19 (1975)Google Scholar
  8. 8.
    Barbasch, D., Moscovici, H.:L 2-index and the Selberg Trace Formula. J. Funct. Anal.53, 151–201 (1983)Google Scholar
  9. 9.
    Bernstein, J., Deligne, B., Kazhadan, D.: Trace Palew-Wiener Theorem for Reductivep-adic groups. (Preprint)Google Scholar
  10. 10.
    Bernstein, I.N., Zelevinski, A.V.: Induced representations of reductivep-adic groups I. Ann. Sci ENS10, 441–472 (1977)Google Scholar
  11. 11.
    Borel, A.: Regularization theorems in Lie algebra cohomology. Applications. Duke Math. J.50, 605–623 (1983)Google Scholar
  12. 12.
    Borel, A., Casselman, W.:L 2-cohomology of locally symmetric manifolds of finite volume. Duke Math. J.50, 625–647 (1983)Google Scholar
  13. 13.
    Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. Proc. Symp. Pure Math.33, 1, 189–202 (1979)Google Scholar
  14. 14.
    Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Princeton: Princeton University Press 1980Google Scholar
  15. 15.
    Casselman, W.: Introduction to the theory of admissible representations ofp-adic groups. (Mimeographed notes)Google Scholar
  16. 16.
    Clozel, L., Delorme, P.: Sur le théorème de Paley-Wiener invariant pour les groupes réductifs réels. C.R.A.S. Paris (To appear)Google Scholar
  17. 17.
    Clozel, L., Delorme, P.: Pseudo-coefficients et cohomologie des groupes réductifs reels. C.R.A.S. Paris (To appear)Google Scholar
  18. 18.
    Clozel, L., Labesse, J.-P., Langlands, R.P.: Morning seminar on the Trace Formula (mimeographed notes). I.A.S., Princeton 1983–84Google Scholar
  19. 19.
    DeGeorge, D.: On a Theorem of Osborne and Warner. J. Funct. Anal.48, 81–94 (1982)Google Scholar
  20. 20.
    DeGeorge, D., Wallach, N.: Limit formulas for multiplicities inL 2(Γ/G). Ann. Math.107, 133–150 (1978)Google Scholar
  21. 21.
    Gèrardin, P.: Construction de Séries discrètesp-adiques. Lect. Notes462. Berlin Heidelberg New York: Springer 1975Google Scholar
  22. 22.
    Harish-Chandra: Harmonic Analysis in Reductivep-adic groups. Proc. Symp. Pure Math.26, 167–192 (1974)Google Scholar
  23. 23.
    Harish-Chandra: The Plancherel formula for reductivep-adic groups. In: Collected Papers, vol. 4. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  24. 24.
    Harish-Chandra: Harmonic Analysis on Reductivep-adic Groups. Lect. Notes in Mathematics 162. Berlin Heidelberg New York: Springer 1984Google Scholar
  25. 25.
    Henniart, G.: La Conjecture de Langlands locale pourGL (3). Mém. Soc. Math. Fr. (To appear)Google Scholar
  26. 26.
    Kazhdan, D.: Arithmetic varieties and their fields of quasi-definition. Actes Cong. Intern. Math.2, 321–325 (1970)Google Scholar
  27. 27.
    Kazhdan, D.: On Arithmetic varieties II. Isr. J. Math.44, 139–159 (1983)Google Scholar
  28. 28.
    Labesse, J.P.: La formule des traces d'Arthur-Selberg. Seminaire Bourbaki, no. 636 (1984–85)Google Scholar
  29. 29.
    Mischenko, P.: Invariant tempered distributions on the reductive groupGL(n, F p). Thesis, Toronto 1982Google Scholar
  30. 30.
    Osborne, M.S., Warner, G.: The theory of Eisenstein systems. New York: Academic Press 1981Google Scholar
  31. 31.
    Rogawski, J.: Representations ofGL(n) and division algebras over ap-adic field. Duke Math. J.50, 161, 196 (1983)Google Scholar
  32. 32.
    Silberger, A.J.: The Langlands Quotient Theorem forp-adic Groups. Math. Ann.236, 95–104 (1978)Google Scholar
  33. 33.
    Varadarajan, V.S.: Harmonic Analysis on Real Reductive Groups. Lecture Notes in Mathematics 576. Berlin Heidelberg New York: Springer 1977Google Scholar
  34. 34.
    Wallach, N.R.: On the Constant term of a square-integrable automorphic form. Proceedings of the Neptun Conference on Operator algebras and Group representations 1980Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Laurent Clozel
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations