Inventiones mathematicae

, Volume 88, Issue 2, pp 257–275 | Cite as

On subgroups ofGLn(Fp)

  • Madhav V. Nori

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton Math. Ser. No. 19, 1956Google Scholar
  3. 3.
    Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math.73, 349–366 (1983)Google Scholar
  4. 4.
    Grothendieck, A.: EGA IV troisième partie. Publ. Math., Inst. Hautes Etud. Sci.28 (1966)Google Scholar
  5. 5.
    Iwasawa, K.: Lectures onp-adicL-functions. Ann. Math. Stud. vol. 74. Princeton Univ. Press 1972Google Scholar
  6. 6.
    Lang, S.: Algebraic groups over finite fields. Am. J. Math.78, 555–563 (1956)Google Scholar
  7. 7.
    Matthews, C.R., Vaserstein, L.N., Weisfeiler, B.: Congruence properties for Zariski-dense subgroups. Proc. London Math. Soc.48, 514–532 (1984)Google Scholar
  8. 8.
    Nori, M.V.: On subgroups ofSL n(ℤ) and\(SL_n (\mathbb{F}_p )\). Preprint 1983Google Scholar
  9. 9.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Ergebn. Math., vol. 68. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  10. 10.
    Ribet, K.: Kummer theory on extensions of abelian varieties by tori. Duke Math. J.46, 743–761 (1979)Google Scholar
  11. 11.
    Serre, J-P.: Représentationsl-adiques. Kyoto Internat. Symp. on Algebraic Number Theory, 1977, pp. 177–193Google Scholar
  12. 12.
    Serre, J-P.: Lie algebras and Lie groups. New York: Benjamin 1965Google Scholar
  13. 13.
    Serre, J-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math.15, 259–331 (1972)Google Scholar
  14. 14.
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc.80 (1968)Google Scholar
  15. 15.
    Weisfeiler, B.: Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups. Ann. Math.120, 271–315 (1984)Google Scholar
  16. 16.
    Schmidt, W.M.: Equations over finite fields. An elementary approach. (Lecture Notes in Math., vol. 536). Berlin-Heidelberg-New York: Springer 1976Google Scholar
  17. 17.
    SGA 1: Lect. Notes in Math., vol. 224. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  18. 18.
    Hall, M., Jr.: The theory of groups. New York: Macmillan 1959Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Madhav V. Nori
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations