Inventiones mathematicae

, Volume 97, Issue 3, pp 613–670 | Cite as

Intersection theory on algebraic stacks and on their moduli spaces

  • Angelo Vistoli
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Artin, M.: Versal deformations and algebraic stacks. Invent. Math.27, 165–189 (1974)Google Scholar
  2. [B] Briney, R.E.: Intersection theory on quotients of algebraic varieties. Am. J. Math.84, 217–238 (1962)Google Scholar
  3. [D-M] Deligne, P., Mumford, D.: The irreducibility of the moduli space of curves of given genus. Publ. Math. I.H.E.S.36, 75–110 (1969)Google Scholar
  4. [Fa] Faber, G.: Chow rings of moduli spaces of curves. Thesis, University of Amsterdam 1988Google Scholar
  5. [Fu] Fulton, W.: Intersection theory. Berlin Heidelberg New York: Springer 1984Google Scholar
  6. [Ga] Gabriel, P.: Construction de préschémas quotients. Exposé V in S.G.A. 6 (Lect. Notes in Math., vol. 151) Berlin Heidelberg New York: Springer 1970Google Scholar
  7. [Gil] Gillet, H.: Intersection theory on algebraic stacks andQ-varieties. J. Pure Appl. Algebra34, 193–240 (1984)Google Scholar
  8. [Gir] Giraud, J.: Cohomologie non abélienne. Berlin Heidelberg New York: Springer 1971Google Scholar
  9. [Gr] Grothendieck, A.: Techniques de descente et théorèmes d'existence en Géométrie Algébrique I and III. Sem. Bourbaki190 (1959) and212 (1961)Google Scholar
  10. [EGA] Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique., Publ. Math. I.H.E.S.Google Scholar
  11. [K-T] Kleiman, S., Thorup, A.: Intersection Theory and Enumerative Geometry. In: Proceedings of Symposia in Pure Mathematics, vol. 46, Am. Math. Soc. Providence 1987Google Scholar
  12. [K] Knutson, D.: Algebraic Spaces (Lect. Notes in Math., vol. 203) Berlin Heidelberg New York: Springer 1971Google Scholar
  13. [L] Laumon, G.: ManuscriptGoogle Scholar
  14. [M1] Mumford, D.: Picard groups of moduli problems. In: Schilling, O.F.G. (ed.) Arithmetical Algebraic Geometry New York: Harper and Row (1965), pp. 33–81Google Scholar
  15. [M2] Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Progress in Mathematics 36 (Volume dedicated to I.R. Shafarevich) Boston: Birkhäuser (1983) pp. 271–328Google Scholar
  16. [V1] Vistoli, A.: Alexander duality in intersection theory (to appear in Comp. Math.)Google Scholar
  17. [V2] Vistoli, A.: Characteristic classes of principal bundles in algebraic intersection theory. Duke Math. J58, 299–315 (1989)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Angelo Vistoli
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations