Inventiones mathematicae

, Volume 97, Issue 3, pp 585–611

Algebraic models of smooth manifolds

  • Jacek Bochnak
  • Wojciech Kucharz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbulut, S., King, H.: The topology of real algebraic sets with isolated singularities Ann. Math.113, 425–446 (1981)Google Scholar
  2. 2.
    Akbulut, S., King, H.: A relative Nash theorem. Trans. Am. Math. Soc.267, 465–481 (1981)Google Scholar
  3. 3.
    Akbulut S., King, H.: Submanifolds and homology of nonsingular real algebraic varieties. Am. J. Math.107, 45–83 (1985)Google Scholar
  4. 4.
    Akbulut, S., King, H.: Polynomial equations of immersed surfaces. Pac. J. Math.131, 209–217 (1988)Google Scholar
  5. 5.
    Atiyah, M.: On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. Fr.94, 307–317 (1956)Google Scholar
  6. 6.
    Benedetti, R., Dedò, M.: Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism. Compos. Math.53, 143–151 (1984)Google Scholar
  7. 7.
    Benedetti, R., Tognoli, A.: Théorèmes d'approximation en géométrie algébrique réelle. Dans: Séminaire sur la géométrie algébrique réelle. Publ. Math. Univ. Paris VII 9, 123–145 (1980)Google Scholar
  8. 8.
    Benedetti, R., Tognoli, A.: Remarks and counterexamples in the theory of real algebraic vector bundles and cycles. In: Colliot-Thélène, J.-L., Coste, M., Mahé, L., Roy, M.-F. (eds.) Géométrie algébrique réelle et formes quatratiques. (Lect. Notes Math., vol. 959, pp. 198–211) Berlin Heidelberg New York: Springer 1982Google Scholar
  9. 9.
    Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergebnisse der Math.. vol. 12, Berlin Heidelberg New York: Springer 1987Google Scholar
  10. 10.
    Bochnak, J., Kucharz, W., Shiota, M.: On equivalence of global real analytic sets and functions. Invent. Math.70, 115–156 (1982)Google Scholar
  11. 11.
    Bochnak, J., Kucharz, W.: Algebraic approximation of mappings into spheres. Michigan Math. J.34, 119–125 (1987)Google Scholar
  12. 12.
    Bochnak, J., Kucharz, W.: On real algebraic morphisms into even-dimensional spheres. Ann. Math.128, 415–433 (1988)Google Scholar
  13. 13.
    Bochnak, J., Kucharz, W.:K-theory of real algebraic surfaces and threefolds. Math. Proc. Cambridge Philo. Soc. (to appear)Google Scholar
  14. 14.
    Bochnak, J., Buchner, M., Kucharz, W.: Vector bundles over real algebraic varieties.K-Theory J. (to appear)Google Scholar
  15. 15.
    Borel, A., Haefliger, A.: La classe d'homologie fondamentale d'un, espace analytique. Bull. Soc. Math. Fr.89, 461–513 (1961)Google Scholar
  16. 16.
    Fulton, W.: Intersection theory. Ergebnisse der Math., vol. 2, Berlin Heidelberg New York: Springer 1984Google Scholar
  17. 17.
    Hartshorne, R.: Algebraic geometry. GTM 52, Berlin Heidelberg New York: Springer 1977Google Scholar
  18. 18.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math.79, 109–326 (1964)Google Scholar
  19. 19.
    Hu, S. T.: Homotopy theory. New York: Academic Press 1959Google Scholar
  20. 20.
    Ivanov, N.: Approximation of smooth manifolds by real algebraic sets. Russ. Math. Surv.37, 1–59 (1982)Google Scholar
  21. 21.
    Kucharz, W.: On homology of real algebraic sets. Invent. Math.82, 19–26 (1985)Google Scholar
  22. 22.
    Kucharz, W.: Vector bundles over real algebraic surfaces and threefolds. Compos. Math.60, 209–225 (1986)Google Scholar
  23. 23.
    Kucharz, W.: Topology of real algebraic threefolds. Duke Math. J.53, 1073–1079 (1986)Google Scholar
  24. 24.
    Moishezon, B.G.: Algebraic homology classes on algebraic varieties. Math. U.S.S.R. Izvestia1, 209–251 (1967)Google Scholar
  25. 25.
    Risler, J.-J.: Sur l'homologie des surfaces algébriques réelles. In: Colliot-Thélène, J.-L., Coste, M., Mahé, L., Roy, M.-F. (eds.) Géométrie algébrique réelle et formes quadratiques. (Lecture Notes in Math. vol 959, pp. 381–385) Berlin Heidelberg New York: Springer 1982Google Scholar
  26. 26.
    Shiota, M.: Equivalence of differentiable functions, rational functions and polynomials. Ann. Inst. Fourier (Grenoble)32, 167–204 (1982)Google Scholar
  27. 27.
    Shiota, M.: Real algebraic realization of characteristic classes. Publ. Res. Inst. Math. Sci., Kyoto Univ.18, 995–1008 (1982)Google Scholar
  28. 28.
    Silhol, R.: A bound on the order ofH n-1(a)(X, ℤ/2) on a real algebraic variety. In: Colliot-Thélène, J.-L., Coste, M., Mahé, L., Roy, M.-F. (eds.) Géométrie algébrique réelle et formes quadratiques. (Lecture Notes in Math. vol. 959, pp. 443–450) Berlin Heidelberg New York: Springer 1982Google Scholar
  29. 29.
    Swan, R.G.: A cancellation theorem for projective modules in the metastable range. Invent. Math.27, 23–43 (1974)Google Scholar
  30. 30.
    Tognoli, A.: Su una congettura di Nash. Ann. Sc. Norm. Super. Pisa27, 167–185 (1973)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jacek Bochnak
    • 1
  • Wojciech Kucharz
    • 2
  1. 1.Department of MathematicsVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations