Inventiones mathematicae

, Volume 98, Issue 2, pp 405–424

Values of quadratic forms at primitive integral points

  • S. G. Dani
  • G. A. Margulis
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A., Prasad, G.: Valeurs de formes quadratiques aux points entiers. C.R Acad. Sci. Paris, Series I,307, 217–220 (1988)Google Scholar
  2. 2.
    Dani, S.G.: Invariant measures and minimal sets of horospherical flows. Invent. Math.64, 357–385 (1981)Google Scholar
  3. 3.
    Dani, S.G.: On uniformly distributed orbits of certain horocycle flows. Ergodic Theory Dyn. Syst.2, 139–158 (1982)Google Scholar
  4. 4.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces. Ergodic Theory Dyn. Syst.4, 25–34 (1984)Google Scholar
  5. 5.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces, II. Ergodic Theory Dyn. Syst.6, 167–182 (1986)Google Scholar
  6. 6.
    Dani, S.G.: Orbits of horospherical flows. Duke Math. J.53, 177–188 (1986)Google Scholar
  7. 7.
    Dani, S.G., Smillie, J.: Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J.51, 185–194 (1984)Google Scholar
  8. 8.
    Katznelson, Y., Weiss, B.: When all points are recurrent/generic. In: Katok, A. (ed.) Ergodic Theory and Dynamical Systems, Vol. I, Proceedings, Special year, Maryland 1979–80 Boston: Birkhäuser, 1981, pp. 195–210Google Scholar
  9. 9.
    Lewis, D.J.: The distribution of values of real quadratic forms at integer points. Proceedings of Symp. in Pure Math. Vol. XXIV, Am. Math. Soc., Providence,RI, 1973Google Scholar
  10. 10.
    Margulis, G.A.: Arithmetic properties of discrete subgroups. Uspehi Mat. Nauk 29, 49–98 (1974) =Russian Math. Surveys29, 107–156 (1974)Google Scholar
  11. 11.
    Margulis, G.A.: Formes quadratiques indéfinies et flots unipotents sur les espaces homogènes. C.R. Acad. Sci. Paris, Ser. I,304, 247–253 (1987)Google Scholar
  12. 12.
    Margulis, G.A.: Indefinite quadratic forms and unipotent flows on homogeneous spaces. Proceedings of Semester on Dynamical Systems and Ergodic Theory, Warsaw, 1986, Banach Center Publications (to appear)Google Scholar
  13. 13.
    Margulis G.A.: Discrete subgroups and ergodic theory. Proceedings of a Conference in honour of Prof. A. Selberg, Oslo, 1987 (to appear)Google Scholar
  14. 14.
    Margulis, G.A.: Lie groups and ergodic theory. In: Arramov, L.L., Tchakerian, K.B. (eds.) Algebra-Some Current Trends, Proceedings, Varna, 1986, Berlin, Heidelberg, New York: Springer 1988, pp. 130–146Google Scholar
  15. 15.
    Oppenheim, A.: Values of quadratic forms, I. Q. J. Math., Oxford Ser. (2)4, 54–59 (1953)Google Scholar
  16. 16.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Berline, Heidelberg, New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. G. Dani
    • 1
  • G. A. Margulis
    • 2
  1. 1.Tata Institute of Fundamental ResearchSchool of MathematicsBombayIndia
  2. 2.Institute for Problems of Information TransmissionMoscowUSSR

Personalised recommendations