Inventiones mathematicae

, Volume 98, Issue 1, pp 139–155 | Cite as

Calabi-Yau manifolds with large Picard number

  • P. M. H. Wilson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., Peters, C., Van der Ven, A.: Compact Complex Surfaces. Berlin Heidelberg New York Tokyo: Springer 1980Google Scholar
  2. 2.
    Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom.18, 755–782 (1983)Google Scholar
  3. 3.
    Beauville, A.: Some remarks on Kähler manifolds withc 1=0. In: Ueno, K. (ed.) Classification of Algebraic and Analytic Manifolds. Proceedings, Katata 1982 (Progr. Math., Vol. 39, pp. 1–26). Boston Basel Stuttgart: Birkhäuser 1983Google Scholar
  4. 4.
    Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Superstring Phenomenology. In: Bardeen, W.A., White, A.R. (eds.) Symposium on Anomalies, Geometry, Topology, pp. 377–394. Argonne Nat. Lab. 1985Google Scholar
  5. 5.
    Candelas, P.: Yukawa couplings between (2, 1)-forms. In: Yau, S.T. (ed.) Mathematical Aspects of String Theory, pp. 488–542. Singapore: World Scientific 1987Google Scholar
  6. 6.
    Clemens, H.: Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. Math. IHES58, 19–38 (1983)Google Scholar
  7. 7.
    Clemens, H.: Double Solids. Adv. Math.47, 107–203 (1983)Google Scholar
  8. 8.
    Davenport, H.: Cubic forms in sixteen variables. Proc. Roy. Soc. A272, 285–303 (1963)Google Scholar
  9. 9.
    Davenport, H., Lewis, D.J.: Non-homogeneous cubic equations. J. Lond. Math. Soc.39, 657–671 (1964)Google Scholar
  10. 10.
    Dine, M., Seiberg, N., Wen, X.-G., Witten, E.: Nonperturbative effects on the string world sheet. Nuclear Phys. B278, 769–789 (1986)Google Scholar
  11. 11.
    Green, P.S., Hübsch, T.: Calabi-Yau hypersurfaces in products of semi-ample surfaces. Commun. Math. Phys.115, 231–246 (1988)Google Scholar
  12. 12.
    Green, P.S., Hübsch, T., Lütken, C.A.: All the Hodge numbers for all Calabi-Yau complete intersections. University of Texas Report UTTG-29-87 (1987)Google Scholar
  13. 13.
    Green, P.S., Hübsch, T.: (1, 1)3 couplings in Calabi-Yau threefolds. University of Texas Report UTTG-1-88 (1988)Google Scholar
  14. 14.
    Green, P.S., Hübsch, T.: Connecting moduli spaces of Calabi-Yau threefolds. University of Texas Report UTTG-4-88 (1988)Google Scholar
  15. 15.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics Vol. 52. New York Heidelberg Berlin: Springer 1977Google Scholar
  16. 16.
    Heath-Brown, D.R.: Cubic forms in ten variables. Proc. Lond. Math. Soc.47, 225–257 (1983)Google Scholar
  17. 17.
    Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle. Notes by J. Werner. In: Hirzebruch, F. Collected Papers II, pp. 757–770. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  18. 18.
    Horowitz, G.T.: What is a Calabi-Yau Space? In: Green, M., Gross, D. (eds.) Unified String Theories, pp. 635–653. Singapore: World Scientific 1986Google Scholar
  19. 19.
    Hübsch, T.: Calabi-Yau Manifolds-Motivations and Constructions. Commun. Math. Phys.108, 291–318 (1987)Google Scholar
  20. 20.
    Kawamata, Y.: A generalization of Kodaira-Ramanujam's vanishing theorem. Math. Ann.261, 43–46 (1982)Google Scholar
  21. 21.
    Kawamata, Y.: The cone of curves on algebraic varieties. Ann. Math.119, 603–633 (1984)Google Scholar
  22. 22.
    Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. math.79, 567–588 (1985)Google Scholar
  23. 23.
    Kawamata, Y.: On the plurigenera of minimal algebraic 3-folds withK≡0. Math. Ann.275, 539–546 (1986)Google Scholar
  24. 24.
    Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Oda, T. (ed.) Algebraic Geometry, Sendai 1985. Adv. Stud. Pure Math. Vol. 10, pp. 283–360. Amsterdam: North Holland 1987Google Scholar
  25. 25.
    Kobayashi, S.: Recent Results in Complex Differential Geometry. Jber. d. Dt. Math.-Verein83, 147–158 (1981)Google Scholar
  26. 26.
    Kollár, J.: The structure of algebraic threefolds-an introduction to Mori's program. Bull. Am. Math. Soc.17, 211–273 (1987)Google Scholar
  27. 27.
    Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. In: Oda, T. (ed.) Algebraic Geometry, Sendai 1985. Adv. Stud. Pure Math. Vol. 10, pp. 449–476. Amsterdam: North Holland 1987Google Scholar
  28. 28.
    Morrison, D.R.: The birational geometry of surfaces with rational double points. Math. Ann.271, 415–438 (1985)Google Scholar
  29. 29.
    Mumford, D.: Enriques' classification in charp: I. In: Spencer, D.D., Iyanaga, S. (eds.) Global Analysis, papers in honour of K. Kodaira, pp. 325–339. University of Tokyo Press, 1969Google Scholar
  30. 30.
    Pinkham, H.: Factorization of birational maps in dimension 3. In: Orlik, P. (ed.) Singularities (Proc. Symp. in Pure Math. Vol. 40 Part 2, pp. 343–372). Providence, Rhode Island: Amer. Math. Soc. 1983Google Scholar
  31. 31.
    Reid, M.: Canonical 3-folds. In: Beauville, A. (ed.) Géométrie algébrique, Angers 1979, pp. 273–310. Sijthoff and Noordhoff, The Netherlands 1980Google Scholar
  32. 32.
    Reid, M.: Minimal models of canonical 3-folds. In: Iitaka, S. (ed.) Algebraic varieties and analytic varieties (Advanced Studies in Pure Math. Vol. 1, pp. 395–418). Kinokuniya, Tokyo and North Holland, Amsterdam 1983Google Scholar
  33. 33.
    Reid, M.: Young person's guide to canonical singularities. In: Bloch, S.J. (ed.) Algebraic Geometry Bowdoin 1985 (Proc. Symp. in Pure Math. Vol. 46 Part 1, pp. 345–416). Providence, Rhode Island: Am. Math. Soc. 1987Google Scholar
  34. 34.
    Reid, M.: The Moduli Space of 3-folds withK=0 may nevertheless be irreducible. Math. Ann.278, 329–334 (1987)Google Scholar
  35. 35.
    Schoen, C.: Algebraic cycles on certain desingularized nodal surfaces. Math. Ann.270, 17–27 (1985)Google Scholar
  36. 36.
    Schoen, C.: On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks bundle. J. Reine Angew. Math.364, 85–111 (1986)Google Scholar
  37. 37.
    Schoen, C.: On fibre products of rational elliptic surfaces with section. Math. Z.197, 177–199 (1988)Google Scholar
  38. 38.
    Serre, J.-P.: A course in arithmetic. Graduate Texts in Mathematics Vol. 7. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  39. 39.
    Strominger, A., Witten, E.: New Manifolds for Superstring Compactification. Commun. Math. Phys.101, 341–361 (1985)Google Scholar
  40. 40.
    Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Mathematics Vol. 439. Berlin Heidelberg New York: Springer 1975Google Scholar
  41. 41.
    Van Geeman, B., Werner, J.: Nodal quintics in ℙ4. University of Utrecht Mathematics Department, Preprint 555 (1989)Google Scholar
  42. 42.
    Viehweg, E.: Vanishing theorems. J. Reine Angew. Math.335, 1–8 (1982)Google Scholar
  43. 43.
    Wall, C.T.C.: Classification Problems in Differential Topology V. On Certain 6-Manifolds. Invent. math.1, 355–374 (1966)Google Scholar
  44. 44.
    Werner, J.: Kleine Auflösungen spezieller dreidimensionaler Varietäten. Bonner Mathematische Schriften 186 (1987)Google Scholar
  45. 45.
    Werner, J.: New examples of threefolds withc 1=0 (with an appendix by B. van Geeman). Math. Gottingensis 20 (1988)Google Scholar
  46. 46.
    Wilson, P.M.H.: On regular threefolds with κ=0. Invent. math.76, 345–355 (1984)Google Scholar
  47. 47.
    Wilson, P.M.H.: Towards birational classification of algebraic varieties. Bull. Lond. Math. Soc.19, 1–48 (1987)Google Scholar
  48. 48.
    Witten, E.: New Issues in Manifolds ofSU (3) holonomy. Nuclear Phys. B268, 79–112 (1986)Google Scholar
  49. 49.
    Witten, E.: Holomorphic curves on manifolds withSU (3) holonomy. In: Yau, S.T. (ed.) Mathematical Aspects of String Theory, pp. 145–149. Singapore: World Scientific 1987Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • P. M. H. Wilson
    • 1
  1. 1.Department of Pure MathematicsUniversity of CambridgeCambridgeUK

Personalised recommendations