Inventiones mathematicae

, Volume 98, Issue 1, pp 1–18 | Cite as

Some applications of hypergeometric shift operators

  • E. M. Opdam


Shift Operator Hypergeometric Shift Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] Bourbaki: Groupes et algèbres de Lie, Ch 4, 5 et 6, Masson, Paris 1981Google Scholar
  2. [C] Carter, R.W.: Simple groups of Lie type. New York: Wiley and sons 1972Google Scholar
  3. [D] Deligne, P.: Equations Différentielles à Points Singuliers Reguliers (Lect. Notes Math., vol. 163). Berlin Heidelberg New York: Springer Verlag (1970)Google Scholar
  4. [G] Good, I.J.: Short proof of a conjecture of Dyson. J. Math. Phys.11 (1970)Google Scholar
  5. [Gu] Gunson, J.: Proof of a conjecture of Dyson in the statistical theory of energy levels. J. Math. Phys.3, 752–753 (1962)Google Scholar
  6. [H] Heckman, G.J.: Root systems and hypergeometric functions II. Comp. Math.64, 353–373 (1987)Google Scholar
  7. [HO] Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Comp. Math.64, 329–352 (1987)Google Scholar
  8. [K] Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I. Indag. Math.36, 48–58 (1974)Google Scholar
  9. [M1] Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. An.13, 988–1007 (1982)Google Scholar
  10. [M2] Macdonald, I.G.: Jacobi polynomials I, II, III (unpublished manuscripts, 1987)Google Scholar
  11. [O1] Opdam, E.M.: Root systems and hypergeometric functions III. Comp. Math.67, 21–49 (1988)Google Scholar
  12. [O2] Opdam, E.M.: Root systems and hypergeometric functions IV. Comp. Math.67, 191–209 (1988)Google Scholar
  13. [S] Selberg, A.: Bemerkninger om et Multiplet Integral. Norsk. Mat. Tidsskrift26, 71–78 (1944)Google Scholar
  14. [T] Titchmarsh, E.C.: The theory of functions. Oxford: Oxford University Press 1932Google Scholar
  15. [W] Wilson, K.: Proof of a conjecture by Dyson. J. Math. Phys.3, 1040–1043 (1962)Google Scholar
  16. [Y.S.] Yano, T., Sekiguchi, J.: The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems I. Tokyo J. Math.2 (1979)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • E. M. Opdam
    • 1
  1. 1.Department of MathematicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations