Inventiones mathematicae

, Volume 84, Issue 2, pp 327–402 | Cite as

Characteristic varieties and vanishing cycles

  • V. Ginsburg
Article

Keywords

Characteristic Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AnLe] Angéniol, B., Lejeune-Jalabert, M.: Le théorème de Riemann-Roch singulier pour lesD-modules. Orsay 1984 (Preprint)Google Scholar
  2. [BV] Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex groups I, II. Math. Ann.259, 153–199 (1982); J. Algebra80, 350–382 (1983)Google Scholar
  3. [Beil] Beilinson, A.: On the derived category of holonomic modules. Moscow 1985 (Preprint)Google Scholar
  4. [BeBe] Beilinson, A., Bernstein, J.: Localization de\(\mathfrak{g}\)-modules. C.R. Acad. Sc. Paris292, 15–18 (1981)Google Scholar
  5. [Be 1] Bernstein, I.N.: Modules over a ring of differential operators. Funct. Anal. Appl.5, 98–101 (1971)Google Scholar
  6. [Be 2] Bernstein, J.: Algebraic theory ofD-modules. 1982 (Preprint)Google Scholar
  7. [BBD] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque,100 (1982)Google Scholar
  8. [BGG] Bernstein, I.N., Gel'fand, I.M., Gel'fand, S.I.: Category of\(\mathfrak{g}\)-modules Funct. Anal. Appl.10, 1–18 (1976)Google Scholar
  9. [BB 1] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. I. Invent. Math.69, 437–476 (1982)Google Scholar
  10. [BB 2] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces III. (Preprint IHES, 1984)Google Scholar
  11. [Br 1] Brylinski, J.-L.: (Co-)homologie d'intersection et faisceaux pervers. Séminaire Bourbaki no 585, février 1982Google Scholar
  12. [Br 2] Brylinski, J.-L.: Transformations canoniques et transformation de Fourier (prépublication 1982)Google Scholar
  13. [BDK] Brylinski, J.-L., Dubson, A., Kashiwara, M.: Formule de l'indice pour les modules holonômes et obstruction d'Euler locale. C.R. Acad. Sc. Paris (26-10-1981)Google Scholar
  14. [BK] Brylinski, J.-L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981)Google Scholar
  15. [BMV] Brylinski, J.-L., Malgrange, B., Verdier, J.-L.: C.R. Acad. Sc. Paris.297, 55–58 (4 juillet 1983)Google Scholar
  16. [D 1] Deligne, P.: SGA 7 exposé XIV Lecture Notes 340Google Scholar
  17. [D 2] Deligne, P.: Lettre à MacPherson, march 1982Google Scholar
  18. [Du 1] Dubson, A.: Calcul des invariants numériques des singularités et applications (Prépublication, S.t.B. Theor. Math. Universität Bonn. 1981)Google Scholar
  19. [Du 2] Dubson, A.: Classes caractéristiques des variétés singulières. C.R. Acad. Sc. Paris,287, 237–240 (11–1978)Google Scholar
  20. [Du 3] Dubson, A.: C.R. Acad. Sc. Paris.299, 113–116 (1984);299, 6, 181–184 (1984)Google Scholar
  21. [FM 1] Fulton, W., MacPherson, R.: Intersecting cycles on an algebraic variety. Proc. Nordic Summer School, p. 179–197. Oslo, 1976Google Scholar
  22. [FM 2] Fulton, W., MacPherson, R.: Categorical framework for the study of singular spaces. Memoirs Am. Math. Soc.31, 243 (1981)Google Scholar
  23. [Ga] Gabber, O.: The integrability of the characteristic variety. Am. J. Math.103, 445–468 (1981)Google Scholar
  24. [Gi 1] Ginsburg, V.: Symplectic geometry and representations. J. Funct. Anal. Appl.17, 75–76 (1983)Google Scholar
  25. [Gi 2] Ginsburg, V.:\(\mathfrak{g}\)-modules, Springer's representations and bivariant Chern classes. Moscow 1984 (Preprint)Google Scholar
  26. [Gi 3] Ginsburg, V.: Lagrangian construction for representations of Hecke algebras. Moscow 1984 (Preprint)Google Scholar
  27. [Gon] Gonzalez-Sprinberg, G.: L'obstruction locale d'Euler et le théorème de MacPherson. Astérisque8–82, 7–32 (1981)Google Scholar
  28. [H] Hotta, R.: On Joseph's construction of Weyl group representations. Tohoku Math. J.36, 49–74 (1984)Google Scholar
  29. [J 1] Joseph, A.: Goldie rank in the enveloping algebra of a semi-simple Lie algebra I, II. J. Algebra65, 269–306 (1980)Google Scholar
  30. [J 2] Joseph, A.: On the variety of a highest weight module. Paris 1982 (Preprint)Google Scholar
  31. [J 3] Joseph, A.: On the associated variety of a primitive ideal. Paris 1983 (Preprint)Google Scholar
  32. [K 1] Kashiwara, M.: Proc. Jap. Acad.,49, 803–804 (1973)Google Scholar
  33. [K 2] Kashiwara, M.:B-function and holonomic systems. Invent. Math.38, 33–53 (1976)Google Scholar
  34. [K 3] Kashiwara, M.: On holonomic systems of differential equations II. Invent. Math.49, 121–135 (1978)Google Scholar
  35. [K 4] Kashiwara, M.: Systèmes d'équations micro-différentielles. Redigé par T. Fernandes. Boston, Basel, Stuttgart: Birkhäuser. Prog. Math.34 (1983)Google Scholar
  36. [K 5] Kashiwara, M.: Vanishing cycles for holonomic systems. Lect. Notes. Math.1016, 134–142 (1983)Google Scholar
  37. [K 6] Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci.20, 319–365 (1984)Google Scholar
  38. [K 7] Kashiwara, M.: The characteristic cycle and the index formula for constructible sheaves. (Preprint Res. Inst. Math. Sci. 1983)Google Scholar
  39. [KK 1] Kashiwara, M., Kawai, T.: On the Characteristic variety of a holonomic system with regular singularities. Adv. Math.34, 163–184 (1979)Google Scholar
  40. [KK 2] Kashiwara, M., Kawai, T.: On holonomic systems of linear differential equations III (systems with regular singularities). Publ. Res. Inst. Math. Sci.17, 813–979 (1981)Google Scholar
  41. [KK 3] Kashiwara, M., Kawai, T.: Second-microlocalization and asymptotic expansions. Lect. Notes Phys.126, 21–76 (1980)Google Scholar
  42. [KS 1] Kashiwara, M., Shapira, P.: Problème de Cauchy pour les systèmes micro-différentiels. Invent. Math.46, 17–38 (1978)Google Scholar
  43. [KS 2] Kashiwara, M., Shapira, P.: Micro-hyperbolic systems. Acta Math.142, 1–55 (1979)Google Scholar
  44. [KS 3] Kashiwara, M., Shapira, P.: Variété charactéristique de la restriction d'un module différentiel. (Prépublication de l'Ecole Polytéchnique, 1981)Google Scholar
  45. [KS 4] Kashiwara, M., Shapira, P.: Micro-support d'un faisceau. Note à C.R. Acad. Sc. Paris,295, 487–491 (1982)Google Scholar
  46. [KS 5] Kashiwara, M., Shapira, P.: Microlocal study of sheaves. (Preprint Res. Inst. Math. Sci. 1984)Google Scholar
  47. [KT] Kashiwara, M., Tanisaki, T.: The characteristic cycles of holonomic systems on a flag manifold. Invent. Math.77, 185–198 (1984)Google Scholar
  48. [KL] Kazhdan, D., Lusztig, G.: A topological approach to Springer's representations. Adv. Math.38, 222–228 (1980)Google Scholar
  49. [La 1] Laumon, G.: Sur la catégorie dériveé desD-modules filtrés. Thèse d'Etat, Orsay 1983Google Scholar
  50. [La 2] Laumon, G.: Transformations canoniques et spécialisation pour lesD-modules filtrés. (à paraitre dans Astérisque)Google Scholar
  51. [Lev] Levasseur. Exposé of a lecture of O. Gabber. Paris 1982Google Scholar
  52. [Le] Le Dung Trang. (To appear)Google Scholar
  53. [LeMe] Le Dung Trang, Mebkhout, Z.: Variétés caractéristiques et variétés polaires. C.R. Acad. Sc. Paris.296, 129–132 (1983)Google Scholar
  54. [Mac] MacPherson R.: Chern classes for singular varieties. Ann. Math.100, 423–432 (1974)Google Scholar
  55. [MacV] MacPherson, R., Vilonen, K.: Construction élémentaires des faisceaux pervers. C.R. Acad. Sc. Paris.299, 10, 443–446 (1984)Google Scholar
  56. [Ma 1] Malgrange, B.: Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque101–102, 243–267 (1983)Google Scholar
  57. [Ma 2] Malgrange, B.: Rapport sur les théorèmes d'indice de Boutet de Monvel à Kashiwara. Astérisque101–102, 230–242 (1982)Google Scholar
  58. [Ma 3] Malgrange, B.: Sur les images directes deD-modules. (Preprint 1984)Google Scholar
  59. [Me 1] Mebkhout, Z.: Ark. Math.20, 111–124 (1982)Google Scholar
  60. [Me 2] Mebkhout, Z.: Une équivalence de catégories. Comput. Math.51, 51–62 (1984); Une autre équivalence de catégories. ibid. 63–88Google Scholar
  61. [Sab] Sabbah, C.: Quelques remarques sur la géométrie des espaces conormaux. (à paraître dans Astérisque)Google Scholar
  62. [SKK 1] Sato, M., Kawai, T., Kashiwara, M.: Hyper-functions and pseudodifferential equations. Lect. Notes Math.287 (1972)Google Scholar
  63. [SKK 2] Sato, M., Kawai, T., Kashiwara, M.: Micro-local Analysis of Prehomogeneous vector spaces. Invent. Math.62, 117–179 (1980)Google Scholar
  64. [Ver 1] Verdier, J.-L.: Seminaire de géométrie analytique, exp. IX. Astérisque 36–37Google Scholar
  65. [Ver 2] Verdier, J.-L.: Spécialisation de faisceaux et monodromic modérée. Astérisque101–102, 332–364 (1983)Google Scholar
  66. [Ver 3] Verdier, J.-L.: Géométrie microlocale. Lect. Notes Math.1016, 117–133 (1983)Google Scholar
  67. [Ver 4] Verdier, J.-L.: Prolongement des faisceaux pervers monodromiques. (à paraître dans Astérisque)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • V. Ginsburg
    • 1
  1. 1.MoscowUdSSR

Personalised recommendations