Characteristic varieties and vanishing cycles
Article
- 3.6k Downloads
- 53 Citations
Keywords
Characteristic Variety
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [AnLe] Angéniol, B., Lejeune-Jalabert, M.: Le théorème de Riemann-Roch singulier pour lesD-modules. Orsay 1984 (Preprint)Google Scholar
- [BV] Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex groups I, II. Math. Ann.259, 153–199 (1982); J. Algebra80, 350–382 (1983)Google Scholar
- [Beil] Beilinson, A.: On the derived category of holonomic modules. Moscow 1985 (Preprint)Google Scholar
- [BeBe] Beilinson, A., Bernstein, J.: Localization de\(\mathfrak{g}\)-modules. C.R. Acad. Sc. Paris292, 15–18 (1981)Google Scholar
- [Be 1] Bernstein, I.N.: Modules over a ring of differential operators. Funct. Anal. Appl.5, 98–101 (1971)Google Scholar
- [Be 2] Bernstein, J.: Algebraic theory ofD-modules. 1982 (Preprint)Google Scholar
- [BBD] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque,100 (1982)Google Scholar
- [BGG] Bernstein, I.N., Gel'fand, I.M., Gel'fand, S.I.: Category of\(\mathfrak{g}\)-modules Funct. Anal. Appl.10, 1–18 (1976)Google Scholar
- [BB 1] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. I. Invent. Math.69, 437–476 (1982)Google Scholar
- [BB 2] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces III. (Preprint IHES, 1984)Google Scholar
- [Br 1] Brylinski, J.-L.: (Co-)homologie d'intersection et faisceaux pervers. Séminaire Bourbaki no 585, février 1982Google Scholar
- [Br 2] Brylinski, J.-L.: Transformations canoniques et transformation de Fourier (prépublication 1982)Google Scholar
- [BDK] Brylinski, J.-L., Dubson, A., Kashiwara, M.: Formule de l'indice pour les modules holonômes et obstruction d'Euler locale. C.R. Acad. Sc. Paris (26-10-1981)Google Scholar
- [BK] Brylinski, J.-L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981)Google Scholar
- [BMV] Brylinski, J.-L., Malgrange, B., Verdier, J.-L.: C.R. Acad. Sc. Paris.297, 55–58 (4 juillet 1983)Google Scholar
- [D 1] Deligne, P.: SGA 7 exposé XIV Lecture Notes 340Google Scholar
- [D 2] Deligne, P.: Lettre à MacPherson, march 1982Google Scholar
- [Du 1] Dubson, A.: Calcul des invariants numériques des singularités et applications (Prépublication, S.t.B. Theor. Math. Universität Bonn. 1981)Google Scholar
- [Du 2] Dubson, A.: Classes caractéristiques des variétés singulières. C.R. Acad. Sc. Paris,287, 237–240 (11–1978)Google Scholar
- [Du 3] Dubson, A.: C.R. Acad. Sc. Paris.299, 113–116 (1984);299, 6, 181–184 (1984)Google Scholar
- [FM 1] Fulton, W., MacPherson, R.: Intersecting cycles on an algebraic variety. Proc. Nordic Summer School, p. 179–197. Oslo, 1976Google Scholar
- [FM 2] Fulton, W., MacPherson, R.: Categorical framework for the study of singular spaces. Memoirs Am. Math. Soc.31, 243 (1981)Google Scholar
- [Ga] Gabber, O.: The integrability of the characteristic variety. Am. J. Math.103, 445–468 (1981)Google Scholar
- [Gi 1] Ginsburg, V.: Symplectic geometry and representations. J. Funct. Anal. Appl.17, 75–76 (1983)Google Scholar
- [Gi 2] Ginsburg, V.:\(\mathfrak{g}\)-modules, Springer's representations and bivariant Chern classes. Moscow 1984 (Preprint)Google Scholar
- [Gi 3] Ginsburg, V.: Lagrangian construction for representations of Hecke algebras. Moscow 1984 (Preprint)Google Scholar
- [Gon] Gonzalez-Sprinberg, G.: L'obstruction locale d'Euler et le théorème de MacPherson. Astérisque8–82, 7–32 (1981)Google Scholar
- [H] Hotta, R.: On Joseph's construction of Weyl group representations. Tohoku Math. J.36, 49–74 (1984)Google Scholar
- [J 1] Joseph, A.: Goldie rank in the enveloping algebra of a semi-simple Lie algebra I, II. J. Algebra65, 269–306 (1980)Google Scholar
- [J 2] Joseph, A.: On the variety of a highest weight module. Paris 1982 (Preprint)Google Scholar
- [J 3] Joseph, A.: On the associated variety of a primitive ideal. Paris 1983 (Preprint)Google Scholar
- [K 1] Kashiwara, M.: Proc. Jap. Acad.,49, 803–804 (1973)Google Scholar
- [K 2] Kashiwara, M.:B-function and holonomic systems. Invent. Math.38, 33–53 (1976)Google Scholar
- [K 3] Kashiwara, M.: On holonomic systems of differential equations II. Invent. Math.49, 121–135 (1978)Google Scholar
- [K 4] Kashiwara, M.: Systèmes d'équations micro-différentielles. Redigé par T. Fernandes. Boston, Basel, Stuttgart: Birkhäuser. Prog. Math.34 (1983)Google Scholar
- [K 5] Kashiwara, M.: Vanishing cycles for holonomic systems. Lect. Notes. Math.1016, 134–142 (1983)Google Scholar
- [K 6] Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci.20, 319–365 (1984)Google Scholar
- [K 7] Kashiwara, M.: The characteristic cycle and the index formula for constructible sheaves. (Preprint Res. Inst. Math. Sci. 1983)Google Scholar
- [KK 1] Kashiwara, M., Kawai, T.: On the Characteristic variety of a holonomic system with regular singularities. Adv. Math.34, 163–184 (1979)Google Scholar
- [KK 2] Kashiwara, M., Kawai, T.: On holonomic systems of linear differential equations III (systems with regular singularities). Publ. Res. Inst. Math. Sci.17, 813–979 (1981)Google Scholar
- [KK 3] Kashiwara, M., Kawai, T.: Second-microlocalization and asymptotic expansions. Lect. Notes Phys.126, 21–76 (1980)Google Scholar
- [KS 1] Kashiwara, M., Shapira, P.: Problème de Cauchy pour les systèmes micro-différentiels. Invent. Math.46, 17–38 (1978)Google Scholar
- [KS 2] Kashiwara, M., Shapira, P.: Micro-hyperbolic systems. Acta Math.142, 1–55 (1979)Google Scholar
- [KS 3] Kashiwara, M., Shapira, P.: Variété charactéristique de la restriction d'un module différentiel. (Prépublication de l'Ecole Polytéchnique, 1981)Google Scholar
- [KS 4] Kashiwara, M., Shapira, P.: Micro-support d'un faisceau. Note à C.R. Acad. Sc. Paris,295, 487–491 (1982)Google Scholar
- [KS 5] Kashiwara, M., Shapira, P.: Microlocal study of sheaves. (Preprint Res. Inst. Math. Sci. 1984)Google Scholar
- [KT] Kashiwara, M., Tanisaki, T.: The characteristic cycles of holonomic systems on a flag manifold. Invent. Math.77, 185–198 (1984)Google Scholar
- [KL] Kazhdan, D., Lusztig, G.: A topological approach to Springer's representations. Adv. Math.38, 222–228 (1980)Google Scholar
- [La 1] Laumon, G.: Sur la catégorie dériveé desD-modules filtrés. Thèse d'Etat, Orsay 1983Google Scholar
- [La 2] Laumon, G.: Transformations canoniques et spécialisation pour lesD-modules filtrés. (à paraitre dans Astérisque)Google Scholar
- [Lev] Levasseur. Exposé of a lecture of O. Gabber. Paris 1982Google Scholar
- [Le] Le Dung Trang. (To appear)Google Scholar
- [LeMe] Le Dung Trang, Mebkhout, Z.: Variétés caractéristiques et variétés polaires. C.R. Acad. Sc. Paris.296, 129–132 (1983)Google Scholar
- [Mac] MacPherson R.: Chern classes for singular varieties. Ann. Math.100, 423–432 (1974)Google Scholar
- [MacV] MacPherson, R., Vilonen, K.: Construction élémentaires des faisceaux pervers. C.R. Acad. Sc. Paris.299, 10, 443–446 (1984)Google Scholar
- [Ma 1] Malgrange, B.: Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque101–102, 243–267 (1983)Google Scholar
- [Ma 2] Malgrange, B.: Rapport sur les théorèmes d'indice de Boutet de Monvel à Kashiwara. Astérisque101–102, 230–242 (1982)Google Scholar
- [Ma 3] Malgrange, B.: Sur les images directes deD-modules. (Preprint 1984)Google Scholar
- [Me 1] Mebkhout, Z.: Ark. Math.20, 111–124 (1982)Google Scholar
- [Me 2] Mebkhout, Z.: Une équivalence de catégories. Comput. Math.51, 51–62 (1984); Une autre équivalence de catégories. ibid. 63–88Google Scholar
- [Sab] Sabbah, C.: Quelques remarques sur la géométrie des espaces conormaux. (à paraître dans Astérisque)Google Scholar
- [SKK 1] Sato, M., Kawai, T., Kashiwara, M.: Hyper-functions and pseudodifferential equations. Lect. Notes Math.287 (1972)Google Scholar
- [SKK 2] Sato, M., Kawai, T., Kashiwara, M.: Micro-local Analysis of Prehomogeneous vector spaces. Invent. Math.62, 117–179 (1980)Google Scholar
- [Ver 1] Verdier, J.-L.: Seminaire de géométrie analytique, exp. IX. Astérisque 36–37Google Scholar
- [Ver 2] Verdier, J.-L.: Spécialisation de faisceaux et monodromic modérée. Astérisque101–102, 332–364 (1983)Google Scholar
- [Ver 3] Verdier, J.-L.: Géométrie microlocale. Lect. Notes Math.1016, 117–133 (1983)Google Scholar
- [Ver 4] Verdier, J.-L.: Prolongement des faisceaux pervers monodromiques. (à paraître dans Astérisque)Google Scholar
Copyright information
© Springer-Verlag 1986