Heegner points and derivatives ofL-series
Article
- 3.8k Downloads
- 271 Citations
Keywords
Heegner Point
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Bibliography
- 1.Atkin, A.O.L., Lehner, J.: Hecke operators onΓ 0(m). Math. Ann.185, 134–160 (1970)Google Scholar
- 2.Birch, B.J.: Elliptic curves and modular functions. Symp. Math. Ist. Alta Mat.4, 27–32 (1970)Google Scholar
- 3.Birch, B.J.: Heegner points of elliptic curves. Symp. Math.15, 441–445 (1975)Google Scholar
- 4.Birch, B.J., Stephens, N.: Heegner's construction of points on the curvey 2=x3-1728 e2. Séminaire de Théorie des Nombres, Paris 1981–82, Progress in Math.38, 1–19. Boston: Birkhäuser 1983Google Scholar
- 5.Birch, B.J., Stephens, N.: Computation of Heegner points. In: Modular forms (ed. R.A. Rankin), pp. 13–41. Chichester: Ellis Horwood 1984Google Scholar
- 6.Deligne, P.: Valeurs de fonctionsL et périodes d'intégrales. Symp. Pure Math. A.M.S.33, II, 313–346 (1979)Google Scholar
- 7.Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular functions of one variable II (ed P. Deligne, W. Kuyk), Lect. Notes Math.349, 143–316. Berlin-Heidelberg-New York: Springer 1973Google Scholar
- 8.Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)Google Scholar
- 9.Drinfeld, V.G.: Elliptic modules (Russian). Math. Sbornik94, 596–627 (1974). English translation: Math. USSR, Sbornik23, (4), 1973Google Scholar
- 10.Eichler, M.: Lectures on modular correspondences. Lect. Notes of the Tata Institute9 (1956), BombayGoogle Scholar
- 11.Eichler, M.: Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math.5, 355–366 (1954)Google Scholar
- 12.Goldfeld, D.: The class numbers of quadratic fields and the conjectures of Birch and Swinnerton-Dyer. Ann. Sc. Norm. Super. Pisa3, 623–663 (1976)Google Scholar
- 13.Gross, B.: Heegner points onX 0 (N). In: Modular Forms (ed. R.A. Rankin), pp. 87–106. Chichester: Ellis Horwood 1984Google Scholar
- 14.Gross, B.: Local heights on curves. (To appear in Proceedings of the Conference on Arithmetic Algebraic Geometry, Storrs. Springer-Verlag)Google Scholar
- 15.Gross, B.: On canonical and quasi-canonical liftings. Invent Math.84, 321–326Google Scholar
- 16.Gross, B.: Heights and the special values ofL-series. (To appear in Conference Proceedings of the CMS Vol. 7 (1986). AMS publication)Google Scholar
- 17.Gross, B., Zagier, D.: Points de Heegner et dérivées de fonctionsL. C. R. Acad. Sci. Paris297 85–87 (1983)Google Scholar
- 18.Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)Google Scholar
- 19.Hecke, E.: Analytische Arithmetik der positiven quadratischen Formen. In: Mathematische Werke, pp. 789–918. Göttingen: Vandenhoeck und Ruprecht 1959Google Scholar
- 20.Hejhal, D.: The Selberg trace formula forPSL (2, ℝ). Lect. Notes Math.1001, Berlin-Heidelberg-New York-Tokyo: Springer 1983Google Scholar
- 21.Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton: University Press 1985Google Scholar
- 22.Kramer, K.: Arithmetic of elliptic curves upon quadratic extension. Trans. Am. Math. Soc.264, 121–135 (1981)Google Scholar
- 23.Lang, S.: Elliptic functions. Reading: Addison-Wesley 1973Google Scholar
- 24.Lang, S.: Les formes bilinéaires de Néron et Tate. Sém. Bourbaki No.274 (1964)Google Scholar
- 25.Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)Google Scholar
- 26.Mestre, J.-F.: Courbes de Weil de conducteur, 5077. C.R. Acad. Sc. Paris300, 509–512 (1985)Google Scholar
- 27.Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math.82, 249–331 (1965)Google Scholar
- 28.Oesterlé, J.: Nombres de classes des corps quadratiques imaginaires. Sém. Bourbaki No.631 (1984)Google Scholar
- 29.Serre, J.-P.: Complex multiplication. In: Algebraic number theory (ed. J.W.S. Cassels, A. Fröhlich), pp. 292–296. London-New York: Academic Press 1967Google Scholar
- 30.Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492–517 (1968)Google Scholar
- 31.Serre, J.-P., Tate, J. (Mimeographed notes from the AMS Summer Institute at Woods Hole, 1964)Google Scholar
- 32.Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math.85, 58–159 (1967)Google Scholar
- 33.Sturm, J.: Projections ofC ∞ automorphic forms. Bull. Am Math. Soc.2, 435–439 (1980)Google Scholar
- 34.Swinnerton-Dyer, H.P.F., Birch, B.J.: Elliptic curves and modular functions. In: Modular functions of one variable IV (ed. B.J. Birch, W. Kuyk) Lect Notes Math.476, pp. 2–32, Berlin-Heidelberg-New York: Springer 1975Google Scholar
- 35.Tate, J.: The arithmetic of elliptic curves. Invent. Math.23, 179–206 (1974)Google Scholar
- 36.Vignéras, M.-F.: Valeur au centre de symétrie des fonctionsL associées aux formes modulaires. Séminare de Théorie des Nombres. Paris 1979–80, Progress in Math. 12, pp. 331–356, Boston: Birkhäuser 1981Google Scholar
- 37.Waldspurger, J.-L.: Correspondances de Shimura et quaternions. (Preprint)Google Scholar
- 38.Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149–156 (1967)Google Scholar
- 39.Zagier, D.:L-series of elliptic curves, the Birch-Swinnerton-Dyer conjecture, and the class number problem of Gauss. Notices Am. Math. Soc.31, 739–743 (1984)Google Scholar
- 40.Drinfeld, V.G.: Coverings ofp-adic symmetric regions. Funct. Anal. Appl.10, 29–40 (1976)Google Scholar
- 41.Manin, Y.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR6 (1972), Am. Math. Soc. translations 19–64Google Scholar
Copyright information
© Springer-Verlag 1986