Inventiones mathematicae

, Volume 84, Issue 2, pp 225–320

Heegner points and derivatives ofL-series

  • Benedict H. Gross
  • Don B. Zagier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Atkin, A.O.L., Lehner, J.: Hecke operators onΓ 0(m). Math. Ann.185, 134–160 (1970)Google Scholar
  2. 2.
    Birch, B.J.: Elliptic curves and modular functions. Symp. Math. Ist. Alta Mat.4, 27–32 (1970)Google Scholar
  3. 3.
    Birch, B.J.: Heegner points of elliptic curves. Symp. Math.15, 441–445 (1975)Google Scholar
  4. 4.
    Birch, B.J., Stephens, N.: Heegner's construction of points on the curvey 2=x3-1728 e2. Séminaire de Théorie des Nombres, Paris 1981–82, Progress in Math.38, 1–19. Boston: Birkhäuser 1983Google Scholar
  5. 5.
    Birch, B.J., Stephens, N.: Computation of Heegner points. In: Modular forms (ed. R.A. Rankin), pp. 13–41. Chichester: Ellis Horwood 1984Google Scholar
  6. 6.
    Deligne, P.: Valeurs de fonctionsL et périodes d'intégrales. Symp. Pure Math. A.M.S.33, II, 313–346 (1979)Google Scholar
  7. 7.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular functions of one variable II (ed P. Deligne, W. Kuyk), Lect. Notes Math.349, 143–316. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  8. 8.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)Google Scholar
  9. 9.
    Drinfeld, V.G.: Elliptic modules (Russian). Math. Sbornik94, 596–627 (1974). English translation: Math. USSR, Sbornik23, (4), 1973Google Scholar
  10. 10.
    Eichler, M.: Lectures on modular correspondences. Lect. Notes of the Tata Institute9 (1956), BombayGoogle Scholar
  11. 11.
    Eichler, M.: Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math.5, 355–366 (1954)Google Scholar
  12. 12.
    Goldfeld, D.: The class numbers of quadratic fields and the conjectures of Birch and Swinnerton-Dyer. Ann. Sc. Norm. Super. Pisa3, 623–663 (1976)Google Scholar
  13. 13.
    Gross, B.: Heegner points onX 0 (N). In: Modular Forms (ed. R.A. Rankin), pp. 87–106. Chichester: Ellis Horwood 1984Google Scholar
  14. 14.
    Gross, B.: Local heights on curves. (To appear in Proceedings of the Conference on Arithmetic Algebraic Geometry, Storrs. Springer-Verlag)Google Scholar
  15. 15.
    Gross, B.: On canonical and quasi-canonical liftings. Invent Math.84, 321–326Google Scholar
  16. 16.
    Gross, B.: Heights and the special values ofL-series. (To appear in Conference Proceedings of the CMS Vol. 7 (1986). AMS publication)Google Scholar
  17. 17.
    Gross, B., Zagier, D.: Points de Heegner et dérivées de fonctionsL. C. R. Acad. Sci. Paris297 85–87 (1983)Google Scholar
  18. 18.
    Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)Google Scholar
  19. 19.
    Hecke, E.: Analytische Arithmetik der positiven quadratischen Formen. In: Mathematische Werke, pp. 789–918. Göttingen: Vandenhoeck und Ruprecht 1959Google Scholar
  20. 20.
    Hejhal, D.: The Selberg trace formula forPSL (2, ℝ). Lect. Notes Math.1001, Berlin-Heidelberg-New York-Tokyo: Springer 1983Google Scholar
  21. 21.
    Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton: University Press 1985Google Scholar
  22. 22.
    Kramer, K.: Arithmetic of elliptic curves upon quadratic extension. Trans. Am. Math. Soc.264, 121–135 (1981)Google Scholar
  23. 23.
    Lang, S.: Elliptic functions. Reading: Addison-Wesley 1973Google Scholar
  24. 24.
    Lang, S.: Les formes bilinéaires de Néron et Tate. Sém. Bourbaki No.274 (1964)Google Scholar
  25. 25.
    Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)Google Scholar
  26. 26.
    Mestre, J.-F.: Courbes de Weil de conducteur, 5077. C.R. Acad. Sc. Paris300, 509–512 (1985)Google Scholar
  27. 27.
    Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math.82, 249–331 (1965)Google Scholar
  28. 28.
    Oesterlé, J.: Nombres de classes des corps quadratiques imaginaires. Sém. Bourbaki No.631 (1984)Google Scholar
  29. 29.
    Serre, J.-P.: Complex multiplication. In: Algebraic number theory (ed. J.W.S. Cassels, A. Fröhlich), pp. 292–296. London-New York: Academic Press 1967Google Scholar
  30. 30.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492–517 (1968)Google Scholar
  31. 31.
    Serre, J.-P., Tate, J. (Mimeographed notes from the AMS Summer Institute at Woods Hole, 1964)Google Scholar
  32. 32.
    Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math.85, 58–159 (1967)Google Scholar
  33. 33.
    Sturm, J.: Projections ofC automorphic forms. Bull. Am Math. Soc.2, 435–439 (1980)Google Scholar
  34. 34.
    Swinnerton-Dyer, H.P.F., Birch, B.J.: Elliptic curves and modular functions. In: Modular functions of one variable IV (ed. B.J. Birch, W. Kuyk) Lect Notes Math.476, pp. 2–32, Berlin-Heidelberg-New York: Springer 1975Google Scholar
  35. 35.
    Tate, J.: The arithmetic of elliptic curves. Invent. Math.23, 179–206 (1974)Google Scholar
  36. 36.
    Vignéras, M.-F.: Valeur au centre de symétrie des fonctionsL associées aux formes modulaires. Séminare de Théorie des Nombres. Paris 1979–80, Progress in Math. 12, pp. 331–356, Boston: Birkhäuser 1981Google Scholar
  37. 37.
    Waldspurger, J.-L.: Correspondances de Shimura et quaternions. (Preprint)Google Scholar
  38. 38.
    Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149–156 (1967)Google Scholar
  39. 39.
    Zagier, D.:L-series of elliptic curves, the Birch-Swinnerton-Dyer conjecture, and the class number problem of Gauss. Notices Am. Math. Soc.31, 739–743 (1984)Google Scholar
  40. 40.
    Drinfeld, V.G.: Coverings ofp-adic symmetric regions. Funct. Anal. Appl.10, 29–40 (1976)Google Scholar
  41. 41.
    Manin, Y.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR6 (1972), Am. Math. Soc. translations 19–64Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Benedict H. Gross
    • 1
  • Don B. Zagier
    • 2
    • 3
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA
  3. 3.Max-Planck-Institut für MathematikBonn 3Federal Republic of Germany

Personalised recommendations