Advertisement

Inventiones mathematicae

, Volume 84, Issue 2, pp 225–320 | Cite as

Heegner points and derivatives ofL-series

  • Benedict H. Gross
  • Don B. Zagier
Article

Keywords

Heegner Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Atkin, A.O.L., Lehner, J.: Hecke operators onΓ 0(m). Math. Ann.185, 134–160 (1970)Google Scholar
  2. 2.
    Birch, B.J.: Elliptic curves and modular functions. Symp. Math. Ist. Alta Mat.4, 27–32 (1970)Google Scholar
  3. 3.
    Birch, B.J.: Heegner points of elliptic curves. Symp. Math.15, 441–445 (1975)Google Scholar
  4. 4.
    Birch, B.J., Stephens, N.: Heegner's construction of points on the curvey 2=x3-1728 e2. Séminaire de Théorie des Nombres, Paris 1981–82, Progress in Math.38, 1–19. Boston: Birkhäuser 1983Google Scholar
  5. 5.
    Birch, B.J., Stephens, N.: Computation of Heegner points. In: Modular forms (ed. R.A. Rankin), pp. 13–41. Chichester: Ellis Horwood 1984Google Scholar
  6. 6.
    Deligne, P.: Valeurs de fonctionsL et périodes d'intégrales. Symp. Pure Math. A.M.S.33, II, 313–346 (1979)Google Scholar
  7. 7.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular functions of one variable II (ed P. Deligne, W. Kuyk), Lect. Notes Math.349, 143–316. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  8. 8.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)Google Scholar
  9. 9.
    Drinfeld, V.G.: Elliptic modules (Russian). Math. Sbornik94, 596–627 (1974). English translation: Math. USSR, Sbornik23, (4), 1973Google Scholar
  10. 10.
    Eichler, M.: Lectures on modular correspondences. Lect. Notes of the Tata Institute9 (1956), BombayGoogle Scholar
  11. 11.
    Eichler, M.: Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math.5, 355–366 (1954)Google Scholar
  12. 12.
    Goldfeld, D.: The class numbers of quadratic fields and the conjectures of Birch and Swinnerton-Dyer. Ann. Sc. Norm. Super. Pisa3, 623–663 (1976)Google Scholar
  13. 13.
    Gross, B.: Heegner points onX 0 (N). In: Modular Forms (ed. R.A. Rankin), pp. 87–106. Chichester: Ellis Horwood 1984Google Scholar
  14. 14.
    Gross, B.: Local heights on curves. (To appear in Proceedings of the Conference on Arithmetic Algebraic Geometry, Storrs. Springer-Verlag)Google Scholar
  15. 15.
    Gross, B.: On canonical and quasi-canonical liftings. Invent Math.84, 321–326Google Scholar
  16. 16.
    Gross, B.: Heights and the special values ofL-series. (To appear in Conference Proceedings of the CMS Vol. 7 (1986). AMS publication)Google Scholar
  17. 17.
    Gross, B., Zagier, D.: Points de Heegner et dérivées de fonctionsL. C. R. Acad. Sci. Paris297 85–87 (1983)Google Scholar
  18. 18.
    Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)Google Scholar
  19. 19.
    Hecke, E.: Analytische Arithmetik der positiven quadratischen Formen. In: Mathematische Werke, pp. 789–918. Göttingen: Vandenhoeck und Ruprecht 1959Google Scholar
  20. 20.
    Hejhal, D.: The Selberg trace formula forPSL (2, ℝ). Lect. Notes Math.1001, Berlin-Heidelberg-New York-Tokyo: Springer 1983Google Scholar
  21. 21.
    Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton: University Press 1985Google Scholar
  22. 22.
    Kramer, K.: Arithmetic of elliptic curves upon quadratic extension. Trans. Am. Math. Soc.264, 121–135 (1981)Google Scholar
  23. 23.
    Lang, S.: Elliptic functions. Reading: Addison-Wesley 1973Google Scholar
  24. 24.
    Lang, S.: Les formes bilinéaires de Néron et Tate. Sém. Bourbaki No.274 (1964)Google Scholar
  25. 25.
    Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)Google Scholar
  26. 26.
    Mestre, J.-F.: Courbes de Weil de conducteur, 5077. C.R. Acad. Sc. Paris300, 509–512 (1985)Google Scholar
  27. 27.
    Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math.82, 249–331 (1965)Google Scholar
  28. 28.
    Oesterlé, J.: Nombres de classes des corps quadratiques imaginaires. Sém. Bourbaki No.631 (1984)Google Scholar
  29. 29.
    Serre, J.-P.: Complex multiplication. In: Algebraic number theory (ed. J.W.S. Cassels, A. Fröhlich), pp. 292–296. London-New York: Academic Press 1967Google Scholar
  30. 30.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492–517 (1968)Google Scholar
  31. 31.
    Serre, J.-P., Tate, J. (Mimeographed notes from the AMS Summer Institute at Woods Hole, 1964)Google Scholar
  32. 32.
    Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math.85, 58–159 (1967)Google Scholar
  33. 33.
    Sturm, J.: Projections ofC automorphic forms. Bull. Am Math. Soc.2, 435–439 (1980)Google Scholar
  34. 34.
    Swinnerton-Dyer, H.P.F., Birch, B.J.: Elliptic curves and modular functions. In: Modular functions of one variable IV (ed. B.J. Birch, W. Kuyk) Lect Notes Math.476, pp. 2–32, Berlin-Heidelberg-New York: Springer 1975Google Scholar
  35. 35.
    Tate, J.: The arithmetic of elliptic curves. Invent. Math.23, 179–206 (1974)Google Scholar
  36. 36.
    Vignéras, M.-F.: Valeur au centre de symétrie des fonctionsL associées aux formes modulaires. Séminare de Théorie des Nombres. Paris 1979–80, Progress in Math. 12, pp. 331–356, Boston: Birkhäuser 1981Google Scholar
  37. 37.
    Waldspurger, J.-L.: Correspondances de Shimura et quaternions. (Preprint)Google Scholar
  38. 38.
    Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149–156 (1967)Google Scholar
  39. 39.
    Zagier, D.:L-series of elliptic curves, the Birch-Swinnerton-Dyer conjecture, and the class number problem of Gauss. Notices Am. Math. Soc.31, 739–743 (1984)Google Scholar
  40. 40.
    Drinfeld, V.G.: Coverings ofp-adic symmetric regions. Funct. Anal. Appl.10, 29–40 (1976)Google Scholar
  41. 41.
    Manin, Y.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR6 (1972), Am. Math. Soc. translations 19–64Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Benedict H. Gross
    • 1
  • Don B. Zagier
    • 2
    • 3
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA
  3. 3.Max-Planck-Institut für MathematikBonn 3Federal Republic of Germany

Personalised recommendations