Inventiones mathematicae

, Volume 82, Issue 2, pp 349–357 | Cite as

Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent

  • Francois Laudenbach
  • Jean-Claude Sikorav
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Arnold] Arnold, V.I.: Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C.R. Acad. Sci. Paris261, 3719–3722 (1965)Google Scholar
  2. [Bott] Bott, R.: Lectures on Morse theory, old and new. BAMS7, 331–358 (1982)Google Scholar
  3. [Chaperon 1] Chaperon, M.: Quelques questions de géométrie symplectique. Séminaire Bourbaki 1982/83, no610. Astérisque105–106, 231–249 (1983)Google Scholar
  4. [Chaperon 2] Chaperon, M.: Une idée du type “géodésiques brisées” pour les systèmes hamiltoniens. C.R. Acad. Sci. Paris298, 293–296 (1984)Google Scholar
  5. [Chaperon 3] Chaperon, M.: An elementary proof of the Conley-Zehnder theorem in symplectic geometry. Les actes du colloque de Groningen 1984. Springer Lect. Notes Math. 1125 (1985)Google Scholar
  6. [Chaperon-Zehnder] Chaperon, M., Zehnder, E.: Quelques résultats globaux en géométrie symplectique, séminaire sud-rhodanien de géométrie, III. Travaux en cours, pp. 51–121. Paris: Hermann (1984)Google Scholar
  7. [Conley-Zehnder] Conley, C.C., Zehnder, E.: The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math.73, 33–49 (1983)Google Scholar
  8. [Franks] Franks, J.M.: Homology and Dynamical Systems. CBMS Reg. Conf. Ser. Math. 49. Providence: Am. Math. Soc. (1978)Google Scholar
  9. [Gromov] Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math.82, 307–347 (1985)Google Scholar
  10. [Hofer] Hofer, H.: Lagrangian embeddings and critical point theory. Univ. de Bath (Royaume-Uni) 1984 PreprintGoogle Scholar
  11. [Maller] Maller M.: Fitted diffeomorphisms of non-simply connected manifolds. Topology19, 395–410 (1980)Google Scholar
  12. [Moser] Moser, J.: On the volume elements of a manifold. Trans. Am. Math. Soc.120, 286–294 (1965)Google Scholar
  13. [Smale] Smale, S.: On the structure of manifolds. Am. J. Math.84, 387–399 (1962)Google Scholar
  14. [Weinstein 1] Weinstein, A.: Lectures on symplectic manifolds. CBMS Reg. Conf. Ser. Math.29. Providence: Am. Math. Soc. (1977)Google Scholar
  15. [Weinstein 2] Weinstein, A.:C 0 perturbation theorems for symplectic fixed points and lagrangian intersections. Séminaire sud-rhodanien de géométrie III. Travaux en cours. Paris: Hermann (1984)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Francois Laudenbach
    • 1
  • Jean-Claude Sikorav
    • 1
  1. 1.Université Paris-Sud et UA 41169/du C.N.R.S.Orsay CedexFrance

Personalised recommendations