Inventiones mathematicae

, Volume 82, Issue 2, pp 257–262 | Cite as

On classification of real singularities

  • Tzee-Char Kuo

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aroca, J.M., Hironaka, H., Vicente, J.L.: Desingularization Theorems. Memorias de Matematica de Instuto Jorge Juan, Madrid, 1977Google Scholar
  2. 2.
    Fukui, T., Yoshinaga, E.: The modified analytic trivialization of family of real analytic functions. Tokyo Metropolitan University (Preprint)Google Scholar
  3. 3.
    Hironaka, H.: Flattening theorem in complex-analytic geometry. Am. J. Math. XCXVII, 503–547 (1975)Google Scholar
  4. 4.
    Kuo, T.C.: The Ratio Test for analytic Whitney stratifications. Proc. Liverpool Singul. Sym., Lect. Notes Math.192, 141–149 (1971)Google Scholar
  5. 5.
    Kuo, T.C.: Une classification des singularités réelles. C.R. Acad. Sci., Paris288, 809–812 (1979)Google Scholar
  6. 6.
    Kuo, T.C.: The modified analytic trivialization of singularities. J. Math. Soc. Japan32, 605–614 (1980)Google Scholar
  7. 7.
    Kuo, T.C., Ward, J.N.: A theorem on almost analytic equisingularities. J. Math. Soc. Japan33, 471–484 (1981)Google Scholar
  8. 8.
    Thom, R.: Local topological properties of differentiable mappings. Differ. Anal. Bombay Colloquium 1964, London: Oxford University Press, 191–202 (1964)Google Scholar
  9. 9.
    Verdier, J.L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math.36, 295–312 (1976)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Tzee-Char Kuo
    • 1
  1. 1.Department of Pure MathematicsUniversity of SydneyAustralia

Personalised recommendations