Inventiones mathematicae

, Volume 82, Issue 2, pp 257–262 | Cite as

On classification of real singularities

  • Tzee-Char Kuo


Real Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aroca, J.M., Hironaka, H., Vicente, J.L.: Desingularization Theorems. Memorias de Matematica de Instuto Jorge Juan, Madrid, 1977Google Scholar
  2. 2.
    Fukui, T., Yoshinaga, E.: The modified analytic trivialization of family of real analytic functions. Tokyo Metropolitan University (Preprint)Google Scholar
  3. 3.
    Hironaka, H.: Flattening theorem in complex-analytic geometry. Am. J. Math. XCXVII, 503–547 (1975)Google Scholar
  4. 4.
    Kuo, T.C.: The Ratio Test for analytic Whitney stratifications. Proc. Liverpool Singul. Sym., Lect. Notes Math.192, 141–149 (1971)Google Scholar
  5. 5.
    Kuo, T.C.: Une classification des singularités réelles. C.R. Acad. Sci., Paris288, 809–812 (1979)Google Scholar
  6. 6.
    Kuo, T.C.: The modified analytic trivialization of singularities. J. Math. Soc. Japan32, 605–614 (1980)Google Scholar
  7. 7.
    Kuo, T.C., Ward, J.N.: A theorem on almost analytic equisingularities. J. Math. Soc. Japan33, 471–484 (1981)Google Scholar
  8. 8.
    Thom, R.: Local topological properties of differentiable mappings. Differ. Anal. Bombay Colloquium 1964, London: Oxford University Press, 191–202 (1964)Google Scholar
  9. 9.
    Verdier, J.L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math.36, 295–312 (1976)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Tzee-Char Kuo
    • 1
  1. 1.Department of Pure MathematicsUniversity of SydneyAustralia

Personalised recommendations