Inventiones mathematicae

, Volume 85, Issue 1, pp 185–198 | Cite as

Bounds on the number of non-rational subfields of a function field

  • Ernst Kani


Function Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castelnuovo, G.: Geometria sulle curve ellitiche. Atti R. Accad. Sci. Torino24, 4–22 (1888)Google Scholar
  2. 2.
    Castelnuovo, G.: Sulle linearità delle involuzioni più volte infinite appartenenti ad una curva algebrica. Atti R. Accad. Sci. Torino28, 727–738 (1892/3)Google Scholar
  3. 3.
    Castelnuovo, G.: Sulle serie algebriche di gruppi di punti appartenenti ad una curva algebrica. Atti R. Accad. Lincei (Rend.), Ser. V,15, 337–344 (1906)Google Scholar
  4. 4.
    de Franchis, M.: Sulle corrispondenze algebriche fra due curve. Atti R. Accad. Lincei (Rend.) Ser. V,12, 302–310 (1903)Google Scholar
  5. 5.
    de Franchis, M.: Un teorema sulle involuzioni irrazionali. Rend. Circ. Mat. Palermo36, 368 (1913)Google Scholar
  6. 6.
    Hartshorne, R.: Algebraic Geometry. Grad. Texts in Math.52. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  7. 7.
    Hardy, G.H., Wright, E.M.: Introduction to the theory of numbers. (4th edition). London: Oxford U Press 1968Google Scholar
  8. 8.
    Humbert, G.: Sur quelques points de la théorie des courbes et des surfaces algébriques I. Des involutions sur les courbes algébriques. J. Math., IV,10, 169–183 (1984)Google Scholar
  9. 9.
    Kani, E.: On Castelnuovo's equivalence defect. J. Reine Angew. Math.352, 24–70 (1984)Google Scholar
  10. 10.
    Lange, H.: Normenendomorphismen abelscher Varietäten. J. Reine Angew. Math.290, 203–213 (1977)Google Scholar
  11. 11.
    Moh, T.T.: On the bound for the de Franchis-Severi theorem. Michigan Math. J.28, 153–155 (1981)Google Scholar
  12. 12.
    Mumford, D.: On Mordell's conjecture. Am. J. Math.87, 1007–1016 (1965)Google Scholar
  13. 13.
    Mumford, D.: Abelian Varieties. London: Oxford University Press 1970Google Scholar
  14. 14.
    Poincaré, H.: Sur les fonctions abéliennes. Am. J. Math.8, 289–342 (1886)Google Scholar
  15. 15.
    Polya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis II, (4. Auflage), Heidelberger Taschenbücher, Berlin-Heidelberg-New York: Springer 1971Google Scholar
  16. 16.
    Rédei, L.: Algebra. Volume 1. Oxford: Pergamon Press 1967Google Scholar
  17. 17.
    Samuel, P.: Lectures on Old and New Results on Algebraic Curves. Tata Inst. Fund. Research. Bombay 1966.Google Scholar
  18. 18.
    Severi, F.: Sugli integrali abeliani riducibili. Atti R. Accad. Lincei (Rend.), Ser. V,23 (1st. sem.) 581–587 (1914)Google Scholar
  19. 19.
    Severi, F.: Trattato di Geometrica Algebrica. Bologna: Zanichelli 1926Google Scholar
  20. 20.
    Tamme, G.: Teilkörper höheren Geschlechts eines algebraischen Funktionenkörpers. Arch. Math.23, 257–259 (1972)Google Scholar
  21. 21.
    Weil, A.: Sur les Courbes Algébriques et les Variétés que s'en deduisent. Paris: Hermann 1948Google Scholar
  22. 22.
    Weil, A.: Variétés Abéliennes et Courbes Algébriques. Paris: Hermann 1948Google Scholar
  23. 23.
    Zariski, O.: Algebraic Surfaces. (2nd. suppl. ed.), Berlin-Heidelberg-New York: Springer 1971Google Scholar
  24. 24.
    Žižcenko, A.B.: On the number of subfields of a field of algebraic functions of one variable (Russian). Izv. Akad. Nauk SSSR, Ser. Mat.21, 541–548 (1957)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Ernst Kani
    • 1
  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelbergFRG

Personalised recommendations