Inventiones mathematicae

, Volume 91, Issue 3, pp 543–557 | Cite as

A note onp-adic etale cohomology in the semi-stable reduction case

  • Osamu Hyodo
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BK] Bloch, S., Kato, K.:p-adic etale cohomology. Publ. Math. IHES63, 107–152 (1986)Google Scholar
  2. [D] Deligne, P.: Equations différentielles à points singuliers réguliers (Lect. Notes Math., vol. 163) Berlin Heidelberg New York: Springer 1970Google Scholar
  3. [F] Faltings G.:p-adic Hodge theory (Preprint 1985)Google Scholar
  4. [FM] Fontaine, J.-M., Messing, W.:p-adic periods andp-adic etale cohomology. Contemporary Math.67, 179–209 (1987)Google Scholar
  5. [IR] Illusie, L., Raynaud, M.: Les suites spectrales associées au complexe de de Rham-Witt. Publ. Math. IHES57, 73–212 (1983)Google Scholar
  6. [K] Kurihara, A.: Construction ofp-adic unit balls and the Hirzebruch proportionality. Am. J. Math.102, 565–648 (1980)Google Scholar
  7. [Me] Messing, W.: The crystals associated to Barsotti-Tate groups: with applications to abelian schemes (Lect. Notes Math., vol. 264) Berlin Heidelberg New York: Springer 1972Google Scholar
  8. [Mum] Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compos. Math.24, 129–174 (1972)Google Scholar
  9. [Mus] Mustafin, G.A.: Nonarchimedean uniformization. Math. USSR Sbornik34, 187–214 (1978)Google Scholar
  10. [S] Serre, J.-P.: Abelianl-adic representations and elliptic curves. New York Amsterdam: Benjamin 1968Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Osamu Hyodo
    • 1
  1. 1.Department of MathematicsNara Women's UniversityNara 630Japan

Personalised recommendations