Inventiones mathematicae

, Volume 91, Issue 3, pp 543–557 | Cite as

A note onp-adic etale cohomology in the semi-stable reduction case

  • Osamu Hyodo


Reduction Case Etale Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BK] Bloch, S., Kato, K.:p-adic etale cohomology. Publ. Math. IHES63, 107–152 (1986)Google Scholar
  2. [D] Deligne, P.: Equations différentielles à points singuliers réguliers (Lect. Notes Math., vol. 163) Berlin Heidelberg New York: Springer 1970Google Scholar
  3. [F] Faltings G.:p-adic Hodge theory (Preprint 1985)Google Scholar
  4. [FM] Fontaine, J.-M., Messing, W.:p-adic periods andp-adic etale cohomology. Contemporary Math.67, 179–209 (1987)Google Scholar
  5. [IR] Illusie, L., Raynaud, M.: Les suites spectrales associées au complexe de de Rham-Witt. Publ. Math. IHES57, 73–212 (1983)Google Scholar
  6. [K] Kurihara, A.: Construction ofp-adic unit balls and the Hirzebruch proportionality. Am. J. Math.102, 565–648 (1980)Google Scholar
  7. [Me] Messing, W.: The crystals associated to Barsotti-Tate groups: with applications to abelian schemes (Lect. Notes Math., vol. 264) Berlin Heidelberg New York: Springer 1972Google Scholar
  8. [Mum] Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compos. Math.24, 129–174 (1972)Google Scholar
  9. [Mus] Mustafin, G.A.: Nonarchimedean uniformization. Math. USSR Sbornik34, 187–214 (1978)Google Scholar
  10. [S] Serre, J.-P.: Abelianl-adic representations and elliptic curves. New York Amsterdam: Benjamin 1968Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Osamu Hyodo
    • 1
  1. 1.Department of MathematicsNara Women's UniversityNara 630Japan

Personalised recommendations