Inventiones mathematicae

, Volume 91, Issue 3, pp 465–481 | Cite as

Heegaard splittings of Seifert fibered spaces

  • Yoav Moriah
Article

Summary

In this paper we give a classification theorem of genus two Heegaard splittings of Seifert fibered manifolds overS2 with three exceptional fibers, except for when two of the exceptional fibers hava the same invariants with opposite orientation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be] Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, 91, Berlin, Heidelberg, New York: Springer 1983Google Scholar
  2. [B, C, Z] Boileau, M., Collins, D.J., Zieschang, H.: Scindements de Heegaard des petites variétés de Seifert. (Preprint)Google Scholar
  3. [B, G, M] Birman, J.S., Gonzàles-Acuña, F., Montesionos, J.M.: Heegaard splittings of prime 3-manifolds are not unique. Mich. Math. J.23, 97–103 (1976)Google Scholar
  4. [B, O] Boileau, M., Otal, J.P.: Groupe des difféotopies de certains variétés de Seifert. C.R. Acad. Sci. Paris303, Serie 1. no 1 1986Google Scholar
  5. [B, R, Z] Boileau, M., Rost, M., Zieschang, H.: On Heegaard Decompositions of Torus Exteriors and Related Seifert Fibered Spaces (to appear in Math. Ann.)Google Scholar
  6. [Bo, O] Bonahon, F., Otal, J.P.: Scindements de Heegaard des espaces lenticulairés. Ann. Sci. Ec. Norm. Super.16, 451–466 (1983)Google Scholar
  7. [C, G] Casson, A.J., Gordon, C.: Manifolds with irreducible Heegaard splittings of arbitrarily high genus (to appear)Google Scholar
  8. [L, S] Lyndon, C.L., Schupp, P.E.: Combinational Group Theory. Berlin Heidelberg New York: Springer 1977Google Scholar
  9. [Mo] Moriah, Y.: Heegaard Splittings and Group Presentations. Thesis, University of Texas, Austin 1986Google Scholar
  10. [Se] Seifert, H.: Topologie dreidimensionaler gefaserte Räume. Acta Math.60, 147–238 (1933) (Translation by W. Heil, memo notes. Florida State University 1976Google Scholar
  11. [Wa] Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Math. Berlin Heidelberg New York: Springer 1983Google Scholar
  12. [Wd1] Waldhausen, F.: Eine Klasse von 3 dimensionalen Mannigfaltigkeiten. I: Ivent. Math.3, 308–333 (1967); II: Invent. Math.3, 487–517 (1967)Google Scholar
  13. [Wd2] Waldhausen, F.: Heegaard-Zerlegungen der 3-Sphäre. Topology7, 195–203 (1968)Google Scholar
  14. [Wl] Wlodarski, L.: On the Equation cos α1+cos α2+cos α3+cos α4=0. Ann. Univ. Sci. Budapest. Eötvös. Sect. Math.12, 147–155 (1969)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Yoav Moriah
    • 1
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations