Inventiones mathematicae

, Volume 91, Issue 3, pp 391–407

Partitions and indefinite quadratic forms

  • George E. Andrews
  • Freeman J. Dyson
  • Dean Hickerson


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.E.: The theory of partitions. In: Rota, G.-C. (ed.) Encyclopedia of math. and its applications, vol. 2. Reading, Mass.: Addison-Wesley 1976Google Scholar
  2. 2.
    Andrews, G.E.: Multiple series Rogers-Ramanujan type identities. Pac. J. Math.114, 267–283 (1984)Google Scholar
  3. 3.
    Andrews, G.E.: Ramanujan's “lost” notebookV, Euler's partition identity. Adv. Math.61, 156–164 (1986)Google Scholar
  4. 4.
    Andrews, G.E.: The fifth and seventh order mock theta functions. Trans. Am. Math. Soc.293, 113–134 (1986)Google Scholar
  5. 5.
    Andrews, G.E.: Questions and conjectures in partition theory. Am. Math. Monthly93, 708–711 (1986)Google Scholar
  6. 6.
    Andrews, G.E.: EYPHKA! num=Δ+Δ+Δ. J. Number Theory23, 285–293 (1986)Google Scholar
  7. 7.
    Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. (3)4, 84–106 (1954)Google Scholar
  8. 8.
    Borevich, Z.I., Shafarevich, I.R.: Number theory. New York London: Academic Press 1966Google Scholar
  9. 9.
    Chandrasekharan, K.: Introduction to analytic number theory. Die Grundlehren der mathematischen Wissenschaften, Band 148. Berlin Heidelberg New York: Springer 1968Google Scholar
  10. 10.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edition. London: Oxford University Press 1968Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • George E. Andrews
    • 1
  • Freeman J. Dyson
    • 2
  • Dean Hickerson
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Institute for Advanced StudyPrincetonUSA

Personalised recommendations