Inventiones mathematicae

, Volume 81, Issue 1, pp 1–27

Rigidity of some translations on homogeneous spaces

  • Dave Witte


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, A., Tits, J.: Homomorphismes ≪abstraits≫ de groupes algébriques simples. Ann. Math.97, 499–571 (1973)Google Scholar
  2. 2.
    Brezin, J., Moore, C.C.: Flows on homogeneous spaces: A new look. Am. J. Math.103, 571–613 (1981)Google Scholar
  3. 3.
    Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. New York: Springer 1982Google Scholar
  4. 4.
    Dani, S.G.: Bernoulli translations and minimal horospheres on homogeneous spaces. J. Indian Math. Soc.39, 245–284 (1976)Google Scholar
  5. 5.
    Dani, S.G.: Invariant measures and minimal sets of horospherical flows. Invent. Math.64, 357–385 (1981)Google Scholar
  6. 6.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, New York: Academic Press 1978Google Scholar
  7. 7.
    Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. New York: Springer 1972Google Scholar
  8. 8.
    Moore, C.C.: Ergodicity of flows on homogeneous spaces. Am. J. Math.88, 154–178 (1966)Google Scholar
  9. 9.
    Parry, W.: Metric classification of ergodic nilflows and unipotent affines. Am. J. Math.93, 819–828 (1971)Google Scholar
  10. 10.
    Raghunathan, M.S.: Discrete Subgroups of Lie Groups. New York: Springer 1972Google Scholar
  11. 11.
    Ratner, M.: Rigidity of horocycle flows. Ann. Math.115, 597–614 (1982)Google Scholar
  12. 12.
    Ratner, M.: Factors of horocycle flows. Ergodic Theory Dyn. Syst.2, 465–489 (1982)Google Scholar
  13. 13.
    Ratner, M.: Horocycle flows, joinings and rigidity of products. Ann. Math.118, 277–313 (1983)Google Scholar
  14. 14.
    Witte, D.: Rigidity of some translationson homogenous spaces. Bull. Am. Math. Soc12, 117–119 (1985)Google Scholar
  15. 15.
    Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Boston: Birkhäuser 1984Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Dave Witte
    • 1
  1. 1.Mathematics DepartmentUniversity of ChicagoChicagoUSA

Personalised recommendations