Inventiones mathematicae

, Volume 84, Issue 3, pp 541–561 | Cite as

Maximal and singular integral operators via Fourier transform estimates

  • Javier Duoandikoetxea
  • José L. Rubio de Francia

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math.78, 289–309 (1956)Google Scholar
  2. 2.
    Calderón, C.: Lacunary spherical means. Ill. J. Math.23, 476–484 (1979)Google Scholar
  3. 3.
    Chen, L.K.: On a singular integral (Preprint)Google Scholar
  4. 4.
    Christ, M., Duoandikoetxea, J., Rubio de Francia, J.L.: Maximal operators related to Radon transform and the Calderón-Zygmund method of rotations (To appear in Duke Math. J.)Google Scholar
  5. 5.
    Coifman, R., Weiss, G.: Analyse harmonique non commutative sur certains espaces homogènes. Lect. Notes Math.242. (1971)Google Scholar
  6. 6.
    Coifman, R., Weiss, G.: Review of the book Littlewood-Paley and multiplier theory. Bull. Am. Math. Soc.84, 242–250 (1978)Google Scholar
  7. 7.
    Fefferman, R.: A note on singular integrals. Proc. Am. Math. Soc.74, 266–270 (1979)Google Scholar
  8. 8.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. Amsterdam: North-Holland: 1985Google Scholar
  9. 9.
    Greenleaf, A.: Principal curvature and harmonic analysis. Indiana Univ. Math. J.30, 519–537 (1981)Google Scholar
  10. 10.
    Jawerth, B.: Weighted inequalities for maximal operators: Linearization, localization and factorization (To appear in Am. J. Math.)Google Scholar
  11. 11.
    Kurtz, D.S.: Littlewood-Paley and multiplier theorems on weightedL p spaces. Trans. Am. Math. Soc.259, 235–254 (1980)Google Scholar
  12. 12.
    Littman, W.: Fourier transform of surface-carried measures and differentiability of surface averages. Bull. Am. Math. Soc.69, 766–770 (1963)Google Scholar
  13. 13.
    Nagel, A., Stein, E.M., Wainger, S.: Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA75, 1060–1062 (1978)Google Scholar
  14. 14.
    Nagel, A., Wainger, S.: Hilbert transform associated with plane curves. Trans. Am. Math. Soc.223, 235–252 (1976)Google Scholar
  15. 15.
    Rivière, N.: Singular integrals and multiplier operators. Ark. Mat.9, 243–278 (1971)Google Scholar
  16. 16.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton N.J.: Princeton University Press 1970Google Scholar
  17. 17.
    Stein, E.M.: Oscillatory integrals in Fourier analysis (Preprint)Google Scholar
  18. 18.
    Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc.84, 1239–1295 (1978)Google Scholar
  19. 19.
    Weinberg, D.A.: The Hilbert transform and maximal function for approximately homogeneous curves. Trans. Am. Math. Soc.267, 295–306 (1981)Google Scholar
  20. 20.
    Zygmund, A.: Trigonometric series, I & II. London, New York: Cambridge University Press 1959Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Javier Duoandikoetxea
    • 1
  • José L. Rubio de Francia
    • 1
  1. 1.División de MatemáticasUniversidad AutónomaMadridSpain

Personalised recommendations