Inventiones mathematicae

, Volume 84, Issue 3, pp 507–522 | Cite as

Local convexity and nonnegative curvature —Gromov's proof of the sphere theorem

  • J. -H. Eschenburg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bangert, V.: Über die Approximation von lokal konvexen Mengen. Manuscr. Math.25, 397–420 (1978)Google Scholar
  2. 2.
    Berger, M.: Les variétés riemannienes (1/4)-pincées. Ann. Sc. Norm. Super. Pisa, III.14, 161–170 (1960)Google Scholar
  3. 3.
    Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Amsterdam: North Holland 1975Google Scholar
  4. 4.
    Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math.96, 413–443 (1972)Google Scholar
  5. 5.
    Eschenburg, J.H., O'Sullivan, J.J.: Jacobi tensors and Ricci curvature. Math. Ann.252, 1–26 (1980)Google Scholar
  6. 6.
    Eschenburg, J.H., Heintze, E.: An elementary proof of the Cheeger-Gromoll Splitting Theorem. Ann. Glob. Analysis and Geometry2, 141–151 (1984)Google Scholar
  7. 7.
    Green, L.W.: A theorem of E. Hopf. Mich. Math. J.5, 31–34 (1958)Google Scholar
  8. 8.
    Greene, R.E., Wu, H.: On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J.22, 641–653 (1973)Google Scholar
  9. 9.
    Greene, R.E., Wu, H.:C convex functions and manifolds of positive curvature. Acta Math.137, 209–245 (1976)Google Scholar
  10. 10.
    Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Gro\en. Lect. Notes Math.55 (1968)Google Scholar
  11. 11.
    Gromoll, D., Meyer, W.: On complete open manifolds of positive curvature. Ann. Math.90, 75–90 (1969)Google Scholar
  12. 12.
    Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math.106, 201–211 (1977)Google Scholar
  13. 13.
    Guilleman, V., Pollack, A.: Differential Topology. Englewood Cliffs: Prentice Hall 1974Google Scholar
  14. 14.
    Hadamard, J.: Sur certaines propriétés des trajectories en dynamique. J. Math. Pures Appl. (5)3, 331–387 (1897)Google Scholar
  15. 15.
    Hopf, H.: Differential Geometry in the Large, Ch. IV: Hadamard's characterization of the ovaloids. Stanford Lectures 1956. Lect. Notes Math.1000, 1983Google Scholar
  16. 16.
    Jost, J., Karcher, H.: Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen. Manuscr. Math.40, 27–77 (1982)Google Scholar
  17. 17.
    Klingenberg, W.: Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Commun. Math. Helv.35, 47–54 (1961)Google Scholar
  18. 18.
    Kobayashi, S., Wu, H.: Complex differential geometry. DMV-Seminar Bd. 3. Basel: Birkhäuser 1983Google Scholar
  19. 19.
    Milnor, J.: Morse theory. Ann. Math. Stud.51, Princeton, N.J. 1963Google Scholar
  20. 20.
    Wu, H.: An elementary method in the study of nonnegative curvature. Acta Math.142, 57–78 (1979)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. -H. Eschenburg
    • 1
  1. 1.Mathematisches Institut der WWUMünsterFederal Republic of Germany

Personalised recommendations