Inventiones mathematicae

, Volume 84, Issue 3, pp 481–505

Cubic metaplectic forms onGL (3)

  • Daniel Bump
  • Jeffrey Hoffstein
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem forSL n n≧3) andSp 2n (n≧2). Publ. Math. Inst. Hautes Etud. Sci.33, 59–137 (1967); Erratum, ibid. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem forSL n n≧3) andSp 2n (n≧2). Publ. Math. Inst. Hautes Etud. Sci.44, 241–244 (1975)Google Scholar
  2. 2.
    Bump, D.: Automorphic forms onGL (3, ℝ). Lect. Notes Math.1083 (1984)Google Scholar
  3. 3.
    Bump, D., Friedberg, S., Goldfeld, D.: Kloosterman sums and Poincaré series forSL (3,ℤ) (to appear)Google Scholar
  4. 4.
    Bump, D., Friedberg, S., Hoffstein, J.: Some cubic exponential sums (to appear)Google Scholar
  5. 5.
    Friedberg, S.: The Fourier expansion onGL(r) congruence subgroups. Appendix to “Analytic Number Theory onGL (n)” by Dorian Goldfeld (to appear in the Procedings of the Stillwater Conference on Analytic Number Theory)Google Scholar
  6. 6.
    Goldfeld, D., Hoffstein, J.: Eisenstein series of half-integral weight and the mean value of real DirichletL-series. Invent. math.80, 185–208 (1985)Google Scholar
  7. 7.
    Gradshteyn, I., Ryzhik, I.: Tables of integrals, series and products. Corrected and enlarged edition. New York: Academic Press (1980)Google Scholar
  8. 8.
    Imai, K., Terras, A.: The Fourier expansions of Eisenstein series forGL (3,ℤ). Trans. Am. Math. Soc.273 (1982)Google Scholar
  9. 9.
    Jacquet, H.: Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. Fr.95, 243–309 (1967)Google Scholar
  10. 10.
    Jacquet, H., Gelbart, S.: A relation between automorphic representations ofGL (2) andGL (3). Ann. Sci. Ec. Norm. Super. (4)11, 471–542 (1978)Google Scholar
  11. 11.
    Kazhdan, D., Patterson, S.: Metaplectic forms. Publ. Math. Inst. Hautes Etud. Sci.59 (1984)Google Scholar
  12. 12.
    Kubota, T.: Some results concerning reciprocity law and real analytic automorphic functions. Proc. Symp. Pure Math.20, 382–395 (1969)Google Scholar
  13. 13.
    Kubota, T.: On automorphic forms and the reciprocity law in a number field. Tokyo: Kinokuniya Book Store Co. 1969Google Scholar
  14. 14.
    Maass, H.: Konstruktion ganzer Modulformen halbzahliger Dimension. Abh. Math. Semin. Univ. Hamb.12, 133–162 (1937)Google Scholar
  15. 15.
    Patterson, S.: A cubic analogue of the theta series. J. Reine Angew. Math.296 (1977)Google Scholar
  16. 16.
    Piatetski-Shapiro, I.: Euler subgroups, in Lie groups and their representation theory, pp. 597–620. New York: John Wiley and Sons 1975Google Scholar
  17. 17.
    Proskurin, I.: Automorphic functions and the homomorphism of Bass-Milnor-Serre I, II (in Russian). Zapiski Naucnik Seminarov LOMI129, pp. 85–126 and 127–163Google Scholar
  18. 18.
    Shalika, J.: The multiplicity one theorem forGL(n). Ann. Math.100, 171–193 (1974)Google Scholar
  19. 19.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math.297 (1973)Google Scholar
  20. 20.
    Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc.31, 79–98 (1975)Google Scholar
  21. 21.
    Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9) 60, No. 4, 375–484 (1981)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Daniel Bump
    • 1
    • 2
  • Jeffrey Hoffstein
    • 3
    • 2
  1. 1.The University of Texas at AustinAustinUSA
  2. 2.The Institute for Advanced StudyPrincetonUSA
  3. 3.The University of RochesterRochesterUSA

Personalised recommendations