Advertisement

Inventiones mathematicae

, Volume 80, Issue 3, pp 489–542 | Cite as

Variation of mixed Hodge structure. I

  • Joseph Steenbrink
  • Steven Zucker
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cattani, E. Kaplan, A. Polarized mixed Hodge structure and the monodromy of a variation of Hodge structure. Invent. Math.67, 101–115 (1982)Google Scholar
  2. 2.
    Deligne, P.: Equations Différentielles à Points Singuliers Réguliers. Lect. Notes Math.163. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Deligne, P. Theorie de Hodge, II. Publ. Math. IHES40, 5–57 (1971)Google Scholar
  4. 4.
    Deligne, P. Theorie de Hodge, III. Publ. Math. IHES44, 5–77 (1974)Google Scholar
  5. 5.
    Deligne, P.: La conjecture de Weil, II. Publ. Math. IHES52, 137–252 (1980)Google Scholar
  6. 6.
    El Zein, F.: Dégénérescence diagonale I, II. C.R. Acad. Sci., Paris296, 51–54, 199–202 (1983)Google Scholar
  7. 7.
    Katz, N. The regularity theorem in algebraic geometry. Actes, Congrès Intern. Math. Nice 1970,1, 437–443 (1970)Google Scholar
  8. 8.
    Rapoport, M., Zink, T.: Über die lokale Zetafunktion von Shimuravarietäten. Monodromie filtration und verschwindende Zyklen in ungleicher Charakteristik. Invent. Math.68, 21–101 (1982)Google Scholar
  9. 9.
    Schmid, W. Variation of Hodge structure: The singularities of the period mapping. Invent. Math.22, 211–319 (1973)Google Scholar
  10. 10.
    Steenbrink, J.: Limits of Hodge structures. Invent. Math.31, 229–257 (1976)Google Scholar
  11. 11.
    Zucker, S. Hodge theory with degenerating coefficients:L 2 cohomology in the Poincaré metric. Ann. Math.109, 415–476 (1979)Google Scholar
  12. 12.
    Zucker, S. Degeneration of Hodge bundles (after Steenbrink). In: Topics in Transcendental Algebraic Geometry. Ann. Math. Studies.106, 121–141 (1984)Google Scholar
  13. 13.
    Du Bois, Ph.: Structure de Hodge mixte sur la cohomologie évanescente. Ann. Inst. Fourier. To appearGoogle Scholar
  14. 14.
    Clemens, C.H. Degeneration of Kähler manifolds. Duke Math. J.44, 215–290 (1977)Google Scholar
  15. 15.
    Clemens, C.H. The Néron model for families of intermediate Jacobians acquiring “algebraic” singularities. Publ. Math. IHES58, 5–18 (1983)Google Scholar
  16. 16.
    El Zein, F. Complexe de Hodge mixte filtré. C.R. Acad. Sci., Paris295, 669–672 (1982)Google Scholar
  17. 17.
    Griffiths, P. Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems. Bull. A.M.S.76, 228–296 (1970)Google Scholar
  18. 18.
    Guillén, F., Navarro Aznar, V., Puerta, F.: Théorie de Hodge via schémas cubiques. Mimeographed notes, Barcelona (1982)Google Scholar
  19. 19.
    Usui, S. Variation of mixed Hodge structures arising from family of logarithmic deformations. Ann. Sci. Ec. Norm. Super.16, 91–107 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Joseph Steenbrink
    • 1
  • Steven Zucker
    • 2
  1. 1.Mathematical InstituteUniversity of LeidenLeidenThe Netherlands
  2. 2.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations