Inventiones mathematicae

, Volume 78, Issue 1, pp 143–160 | Cite as

Fundamental solutions and geometry of the sum of squares of vector fields

  • Antonio Sánchez-Calle


Vector Field Fundamental Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonami, A., Karoui, N., Reinhard, H., Roynette, B.: Processus de diffusion associé à un opérateur elliptique dégénéré. Ann. Inst. H. Poincaré S. B. b.7, 31–80 (1971)Google Scholar
  2. 2.
    Bony, J.M.: Principe du maximum, inégalité de Harnack et unicité du probleme de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier19, (1), 277–304 (1969)Google Scholar
  3. 3.
    Fefferman, C., Phong D.H.: Subelliptic eigenvalue problems, Proceedings of the Conference on Harmonic Analysis in Honor of Antoni Zygmund. Wadsworth Math. Series 1981, pp. 590–606Google Scholar
  4. 4.
    Fefferman, C., Phong, D.H.: The uncertainty principle, and sharp Gårding inequalities. Comm. Pure Appl. Math.34, 285–330 (1981)Google Scholar
  5. 5.
    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv för Mat13, 161–207 (1975)Google Scholar
  6. 6.
    Folland, G.B., Stein, F.M.: Estimates for the\(\bar \partial _b \) and analysis on the Heisenberg group. Comm. Pure Appl. Math.27, 429–522 (1974)Google Scholar
  7. 7.
    Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math.139, 95–153 (1977)Google Scholar
  8. 8.
    Gaveau, B.: Systemes dynamiques associés a certains opérateurs hypoelliptiques. Bull. Sc. math.102, 203–229 (1978)Google Scholar
  9. 9.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math.119, 147–171 (1967)Google Scholar
  10. 10.
    Hörmander, L., Melin, A.: Free systems of vector fields. Arkiv för Mat.16, 83–88 (1978)Google Scholar
  11. 11.
    Hunt, G.: Semigroups of measures on Lie groups. Trans. Amer. Math. Soc.81, 264–293 (1956)Google Scholar
  12. 12.
    Kohn, J.J.: Pseudodifferential operators and hypoellipticity. Proc. Sym. Pure Math.23, 61–69 (1973)Google Scholar
  13. 13.
    Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus, Part II. J. Fac. Sci. Univ. Tokyo, Sect. IA Math.Google Scholar
  14. 14.
    Nagel, A., Stein, E.M., Wainger, S.: Boundary behavior of functions holomorphic in domains of finite type. Proc. Natl. Acad. Sci. USA78, 6596–6599 (1981)Google Scholar
  15. 15.
    Nagel, A., Stein, E.M. Wainger, S.: Balls and metrics defined by vector fields I: Basic properties. Acta Math. in press (1984)Google Scholar
  16. 16.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent Lie groups. Acta Math137, 247–320 (1977)Google Scholar
  17. 17.
    Sánchez-Calle, A.: Estimates for kernels associated to some subelliptic operators. Thesis, Princeton University, 1983Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Antonio Sánchez-Calle
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations