Inventiones mathematicae

, Volume 78, Issue 1, pp 13–88 | Cite as

Nombres de Tamagawa et groupes unipotents en caractéristique p

  • Joseph Oesterlé
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [A] Bourbaki, N.: AlgèbreGoogle Scholar
  2. [Be] Behr, H.: Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern. Invent. Math.7, 1–32 (1969)Google Scholar
  3. [Bo 1] Borel, A.: Linear algebraic groups (notes by H. Bass). New York: Benjamin, 1969Google Scholar
  4. [Bo 2] Borel, A.: Some fineteness properties of adele groups over number fields. Publ. Math. I. H. E. S.16, 5–30 (1963)Google Scholar
  5. [Bm] Bombieri, E.: On exponential sums in finite fields, II. Invent. Math.47, 29–39 (1978)Google Scholar
  6. [B-S] Borel, A., Serre, J-P.: Théorèmes de finitude en cohomologie galoisienne. Comm. Math. Helv.39, 111–164 (1964)Google Scholar
  7. [B-T1] Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I. H. E. S.27, 55–151 (1965)Google Scholar
  8. [B-T2] Borel, A., Tits, J.: Théorèmes de structure et de conjugaison pour les groupes algébriques linéaires. C. R. Acad. Sci. Paris, t.287 55–57 (1978)Google Scholar
  9. [C-E] Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press 1956Google Scholar
  10. [D-G] Demazure, M., Gabriel, P.: Groupes algébriques. Paris: Masson 1970Google Scholar
  11. [EGA] Grothendieck, A.: Éléments de géométrie algébrique (rédigés en collaboration avec J. Dieudonné). Publ. Math. I.H.E.S. (1960)Google Scholar
  12. [Go] Godement, R.: Domaines fondamentaux des groupes arithmétiques. Séminaire Bourbaki, Exposé257, 1962–63Google Scholar
  13. [Ha] Harder, G.: Minkowskische Reduktionstheorie über Funktionenkörpern. Invent. Math.7, 33–54 (1969)Google Scholar
  14. [INT] Bourbaki, N.: IntégrationGoogle Scholar
  15. [K-M-T] Kambayashi, T., Miyanishi, M., Takeuchi, M.: Unipotent algebraic groups. Lecture Notes in Mathematics, vol. 414. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  16. [Kn] Kneser, M.: Starke Approximation in algebraische Gruppen. J. reine angew. Math.218, 190–203 (1965)Google Scholar
  17. [La] Lang, S.: Algebraic groups over finite fields. Amer. J. Math.78, 659–684 (1956)Google Scholar
  18. [LIE] Bourbaki, N.: Groupes et algèbres de LieGoogle Scholar
  19. [Na] Nakayama, T.: Cohomology of class field theory and tensor product modules I. Ann. of Math.65, 255–267 (1957)Google Scholar
  20. [On1] Ono, T.: On the Tamagawa number of algebraic tori. Ann. of Math.78, 47–73 (1963)Google Scholar
  21. [On2] Ono, T.: On the relative theory of Tamagawa numbers. Ann. of Math.82, 88–111 (1965)Google Scholar
  22. [Ra] Raynaud, M.: Modèles de Néron. C. R. Acad. Sci. Paris, t.262, 345–347 (1966)Google Scholar
  23. [Ro1] Rosenlicht, M.: Some rationality questions on algebraic groups. Ann. Mat. Pura Appl.43, 25–50 (1957)Google Scholar
  24. [Ro2] Rosenlicht, M.: Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl.61, 97–120 (1963)Google Scholar
  25. [Ru] Russel, P.: Forms of the affine line and its additive group. Pac. J. of Math.32, 527–539 (1970)Google Scholar
  26. [Sa] Sansuc, J.-J.: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. reine angew. Math.327, 12–80 (1981)Google Scholar
  27. [Se1] Serre J-P.: Cohomologie galoisienne. Lecture Notes in Mathematics, vol. 5. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  28. [Se2] Serre, J-P.: Corps locaux. Act. Sci. Ind. no 1296. Paris: Hermann 1962Google Scholar
  29. [Se3] Serre, J-P.: Groupes algébriques et corps de classes. Act. Sci. Ind. no 1264. Paris: Hermann 1959Google Scholar
  30. [Se4] Serre, J-P.: Local class field theory. In: Algebraic number theory, Cassels, J.W.S., Fröhlich, A., (eds.). London-New York: Acad. Press 1967, pp. 128–161Google Scholar
  31. [Se5] Serre, J-P.: Modular forms and Galois representations. In: Algebraic number filds, Fröhlich, A., (ed). London-New York-San Francisco: Acad. Press 1977Google Scholar
  32. [SGA] Demazure, M., Grothendieck, A.: Schémas en groupes. Lecture Notes in Mathematics, vols. 151, 152, 153. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  33. [St] Steinberg, R.: Endomorphisms of linear algebraic groups. Memoirs of the A.M.S., 1968Google Scholar
  34. [Ta1] Tate, J.: Fourier analysis in number fields and Hecke's Zeta-Functions. In: Algebraic number theory, Cassels, J. W. S., Fröhlich, A., (eds.). London-New York: Acad. Press 1967 pp. 305–347Google Scholar
  35. [Ta2] Tate, J.: Global class field theory, prepared by B.J. Birch and R.R. Laxton. In: Algebraic number theory, Cassels, J. W. S., Fröhlich, A., (eds.). London-New York: Acad. Press 1967, pp. 162–203Google Scholar
  36. [Ta3] Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Cong. Stokholm, 1962, pp. 288–295Google Scholar
  37. [TG] Bourbaki, N.: Topologie généraleGoogle Scholar
  38. [Ti1] Tits, J.: Lectures on algebraic groups, notes by P. André and D. Winter. Yale University, 1968Google Scholar
  39. [Ti2] Tits, J.: Classification of algebraic semisimple groups. In: Algebraic groups and discontinuous subgroups. Proc. of Symp. in pure Math.IX, 32–62 (1966)Google Scholar
  40. [VAR] Bourbaki, N.: Variétés différentielles et analytiquesGoogle Scholar
  41. [We1] Weil, A.: Adeles and algebraic groups, notes by M. Demazure and T. Ono, Progress in Math., vol.23. Boston: Birkhäuser 1982Google Scholar
  42. [We2] Weil, A.: Basic number theory. Grundlehren der mathematischen Wissenschaften. Berlin-Heidelberg-New York: Springer 1967Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Joseph Oesterlé
    • 1
  1. 1.Eccle Normale SupérieureE.R.A. 589ParisFrance

Personalised recommendations