Advertisement

Inventiones mathematicae

, Volume 90, Issue 2, pp 389–407 | Cite as

Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville

  • Mark Green
  • Robert Lazarsfeld
Article

Keywords

Deformation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACGH] Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of algebraic curves. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  2. [BS] Banica, C., Stanasila, O.: Méthodes algébriques dans la theorie des éspaces complexes. Paris: Gauthier-Villars 1977Google Scholar
  3. [BPV] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  4. [C] Catanese, F.: Moduli of surfaces of general type, in Proceedings of the 1982 conference at Ravello. Lect. Notes Math., vol.997, pp. 90–112. Berlin-Heidelberg-New York: Springer 1983Google Scholar
  5. [CL] Carrell, J., Lieberman, D.: Holomorphic vector fields and Kähler manifolds. Invent. math.21, 303–309 (1973)Google Scholar
  6. [D] Deligne, P.: Théorème de Lefschetz et critères de dégénérescence des suites spectrales. Publ. Math., Inst. Hautes Etud. Sci.35, 259–278 (1968)Google Scholar
  7. [E] Enriques, F.: Le Superficie algebriche. Zanichelli 1949Google Scholar
  8. [EV] Esnault, H., Viehweg, E.: Logarithmic De Rham complexes and vanishing theorems. Invent. math.86, 161–194 (1986)Google Scholar
  9. [GH] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley and Sons 1978Google Scholar
  10. [K] Kollár, J.: Vanishing theorems for cohomology groups, to appear in the Proceedings of the 1985 conference at BowdoinGoogle Scholar
  11. [Mt] Matsumura, H.: Commutative algebra. New York: Benjamin 1970Google Scholar
  12. [M] Mumford, D.: Abelian varieties. Oxford Univ. Press 1970Google Scholar
  13. [U] Ueno, K.: (ed.) Classification of algebraic and analytic manifolds. Progr. Math.39. Birkhäuser (1983)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Mark Green
    • 1
  • Robert Lazarsfeld
    • 1
  1. 1.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations