Inventiones mathematicae

, Volume 90, Issue 2, pp 359–387

The Kodaira dimension of the moduli space of curves of genus ≧23

  • David Eisenbud
  • Joe Harris
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: The geometry of algebraic curves I. Berlin-Heidelberg-New York: Springer 1984Google Scholar
  2. Chang, M.-C., Ran, Z.: Unirationality of the moduli spaces of curves of genus 11, 13 (and 12). Invent. Math.76, 41–54 (1984)Google Scholar
  3. Comtet, L.: Advanced combinatorics. Boston: Reidel 1974Google Scholar
  4. Eisenbud, D., Harris, J.: Divisors on general curves and cuspidal rational curves. Invent. Math.74, 371–418 (1983a)Google Scholar
  5. Eisenbud, D., Harris, J.: On the Brill-Noether Theorem. Lect. Notes Math., Vol. 997, pp. 131–137. Berlin-Heidelberg-New York: Springer 1983aGoogle Scholar
  6. Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math.85, 337–371 (1986)Google Scholar
  7. Eisenbud, D., Harris, J.: The irreducibility of some families of linear series. Ann. Sci. Ec. Norm. Super., IV. Ser. (1987a)Google Scholar
  8. Eisenbud, D., Harris, J.: Existence, decomposition, and limits of certain Weierstrass points. Invent. Math.87, 495–515 (1987b)Google Scholar
  9. Eisenbud, D., Harris, J.: When ramification points meet. Invent. Math.87, 485–493 (1987)Google Scholar
  10. Fulton, W.: Intersection theory. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  11. Fulton, W.: Hurwitz schemes and the irreducibility of moduli of algebraic curves. Ann. Math.90, 542 (1969)Google Scholar
  12. Griffiths, P.A., Harris, J.: Principles of algebraic geometry. New York: John Wiley & Sons 1978Google Scholar
  13. Griffiths, P.A., Harris, J.: On the variety of special linear systems on a general algebraic curve. Duke Math. J.47, 233–272 (1980)Google Scholar
  14. Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math.72, 221–239 (1983)Google Scholar
  15. Harris, J.: On the Kodaira dimension of the moduli space of curves, II: The even genus case. Invent. Math.75, 437–466 (1984)Google Scholar
  16. Harris, J., Mumford, D.: On the Kodaira Dimension of the Moduli Space of Curves. Invent. Math.67, 23–86 (1982)Google Scholar
  17. Harris, J., Tu, L.: Chern numbers of kernel and cokernel bundles. [Appendix to Harris (1984)]. Invent. Math.75, 467–475 (1984)Google Scholar
  18. Hazewinkel, M., Martin, C.F.: Representations of the symmetric group, specialization order, systems and Grassmann manifolds. L'Ens. Math.29, 53–87 (1983)Google Scholar
  19. Igusa, J.-I.: Arithmetic varieties of moduli for genus two. Ann. Math.72, 612–649 (1960)Google Scholar
  20. Kempf, G.: Curves ofg d1's. Compos. Math.55, 157–162 (1985)Google Scholar
  21. Knudsen, F.: The projectivity of the moduli space of stable curves II: The stacksM g,n. Math. Scand.52, 161–199 (1983)Google Scholar
  22. Kollár, J., Schreyer, F.O.: The moduli of curves is stably rational forg≦6. Duke Math. J.51, 239–242 (1984)Google Scholar
  23. Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Arithmetic and geometry, Artin, M., Tate, J. (eds.), pp. 271–327. Boston: Birkhäuser 1983Google Scholar
  24. Sernesi, E.: L'unirazionalità della varietà dei moduli delli curve di genere dodici. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser.8, 405–439 (1981)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • David Eisenbud
    • 1
  • Joe Harris
    • 2
  1. 1.Brandeis UniversityWalthamUSA
  2. 2.Brown UniversityProvidenceUSA

Personalised recommendations