Inventiones mathematicae

, Volume 90, Issue 2, pp 297–332 | Cite as

Localization and standard modules for real semisimple Lie groups I: The duality theorem

  • Henryk Hecht
  • Dragan Miličić
  • Wilfried Schmid
  • Joseph A. Wolf


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beilinson, A., Bernstein, J.: Localisation de g-modules. C. R. Acad. Sci. Paris, Ser. I292, 15–18 (1981)Google Scholar
  2. 2.
    Beilinson, A., Bernstein, J.: A generalization of Casselman's submodule theorem. In: Representation theory of reductive groups, Progress in Mathematics, vol. 40, pp. 35–52. Boston: Birkhäuser 1983Google Scholar
  3. 3.
    Bialynicki-Birula, A.: On homogeneous affine spaces of linear algebraic groups. Am. J. Math.85, 577–582 (1963)Google Scholar
  4. 4.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  5. 5.
    Borel, A., et al.: AlgebraicD-modules. Boston-New York: Academic Press 1986Google Scholar
  6. 6.
    Brylinski, J.L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981)Google Scholar
  7. 7.
    Bourbaki, N.: Algébre, Ch. I–X. Paris: Masson 1980–1981Google Scholar
  8. 8.
    Bourbaki, N.: Groupes et algébres de Lie, Ch. I–VIII. Paris: Masson 1981Google Scholar
  9. 9.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton: Princeton University Press 1956Google Scholar
  10. 10.
    Dixmier, J.: Enveloping algebras. Amsterdam: North-Holland 1977Google Scholar
  11. 11.
    Enright, T.J., Wallach, N.R.: Notes on homological algebra and representations of Lie algebras. Duke Math. J.47, 1–15 (1980)Google Scholar
  12. 12.
    Grothendieck, A.: Sur quelques points d'algébre homologique. Tôhoku Math. J.9, 119–221 (1957)Google Scholar
  13. 13.
    Hochschild, G.: Introduction to affine algebraic groups. San Francisco: Holden-Day 1971Google Scholar
  14. 14.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979)Google Scholar
  15. 15.
    Langlands, R.P.: On the classification of irreducible representations of real algebraic groups, mimeographed notes. Institute for Advanced Study, 1973Google Scholar
  16. 16.
    Lusztig, G., Vogan, D.: Singularities of closures ofK-orbits on flag manifolds. Invent. Math.71, 365–379 (1983)Google Scholar
  17. 17.
    Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan31, 332–357 (1979)Google Scholar
  18. 18.
    Miličić D.: Localization and representation theory of reductive Lie groups mimeographed notes; to appearGoogle Scholar
  19. 19.
    Miličić D., Taylor, J.L.: Localization and coherent continuation. (Preprint)Google Scholar
  20. 20.
    Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik, Band 34. Berlin-Heidelberg-New York: Springer Berlin 1965Google Scholar
  21. 21.
    Schmid, W.: Recent developments in representation theory. In: Proceedings of Arbeitstagung, Bonn 1984, Lect. Notes Math., vol. 1111 pp 135–153. Berlin-Heidelberg-New York-Tokyo: Springer 1985Google Scholar
  22. 22.
    Vogan, D.: Representations of real reductive Lie groups. Progress in Mathematics, vol. 15. Boston: Birkhäuser 1981Google Scholar
  23. 23.
    Vogan, D.: Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lusztig conjectures in the integral case. Invent. Math.71, 381–417 (1983)Google Scholar
  24. 24.
    Wolf, J.A.: Finiteness of orbit structure for real flag manifolds. Geom. Dedicata3, 377–384 (1974)Google Scholar
  25. 25.
    Wolf, J.A.: Unitary representations on partially holomorphic cohomology spaces. Mem. Amer. Math. Soc.138 (1974)Google Scholar
  26. 26.
    Zuckerman, G.J.: Geometric methods in representation theory. In: Representation theory of reductive groups, Progress in Mathematics, vol. 40, pp. 283–290. Boston: Birkhäuser 1983Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Henryk Hecht
    • 1
  • Dragan Miličić
    • 1
    • 2
  • Wilfried Schmid
    • 3
  • Joseph A. Wolf
    • 4
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  3. 3.Department of MathematicsHarvard UniversityCambridgeUSA
  4. 4.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations