Numerische Mathematik

, Volume 64, Issue 1, pp 409–431 | Cite as

Half-explicit Runge-Kutta methods for semi-explicit differential-algebraic equations of index 1

  • M. Arnold
  • K. Strehmel
  • R. Weiner
Article

Summary

For the numerical solution of non-stiff semi-explicit differentialalgebraic equations (DAEs) of index 1 half-explicit Runge-Kutta methods (HERK) are considered that combine an explicit Runge-Kutta method for the differential part with a simplified Newton method for the (approximate) solution of the algebraic part of the DAE. Two principles for the choice of the initial guesses and the number of Newton steps at each stage are given that allow to construct HERK of the same order as the underlying explicit Runge-Kutta method. Numerical tests illustrate the efficiency of these methods.

Mathematics Subject Classification (1991)

65L05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, M. (1990): Numerische Behandlung von semi-expliziten Algebrodifferentialgleichungen vom Index 1 mit linear-impliziten Verfahren. PhD thesis, Martin-Luther-Universität Halle, Sektion MathematikGoogle Scholar
  2. Butcher, J.C. (1987): The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. Wiley, Chichester New YorkGoogle Scholar
  3. Deuflhard, P., Hairer, E., Zugck, J. (1987): One-step and extrapolation methods for differential-algebraic systems. Numer. Math.51, 501–516Google Scholar
  4. Dormand, J.R., Prince, P.J. (1980): A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math.6, 19–26Google Scholar
  5. Griepentrog, E., März, R. (1986): Differential-algebraic equations and their numerical treatment. Teubner Texte zur Mathematik. Teubner, LeipzigGoogle Scholar
  6. Gear, C.W., Petzold, L.R. (1984): ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal.21, 716–728Google Scholar
  7. Hairer, E., Lubich, Ch., Roche, M. (1989): The numerical solution of differential-algebraic systems by Runge-Kutta methods. Lecture Notes in Mathematics, 1409. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Hairer, E., Nørsett, S.P., Wanner, G. (1978): Solving ordinary differential equations.I. Nonstiff Problems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Hairer, E., Wanner, G. (1974): On the Butcher group and general multivalue methods. Computing,13, 1–15Google Scholar
  10. Hairer, E., Wanner, G. (1991): Solving ordinary differential equations.II. Stiff and differential-algebraic problems. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  11. Prince, P.J., Dormand, J.R. (1981): High order embedded Runge-Kutta formulae. J. Comput. Appl. Math.7, 67–75Google Scholar
  12. Petzold, L.R. (1986): Order results for implicit Runge-Kutta methods applied to differential/algebraic systems. SIAM J. Numer. Anal.23, 837–852Google Scholar
  13. Rentrop, P., Roche, M., Steinebach, G. (1989): The application of Rosenbrock-Wanner type methods with stepsize control in differential-algebraic equations. Numer. Math.55, 545–563Google Scholar
  14. Rentrop, P., Steinebach, G. (1988): The numerical solution of ordinary differential equations arising in vehicle dynamic. In K. Strehmel, ed., Numerical treatment of differential equations. Proceedings of the fourth seminar “NUMDIFF-4”, Halle 1987, Leipzig. Teubner-Texte zur Mathematik, Teubner, LeipzigGoogle Scholar
  15. Roche, M. (1988): Rosenbrock methods for differential-algebraic systems. Numer. Math.52, 45–63Google Scholar
  16. Strehmel, K., Weiner, R., Dannehl, I. (1990): On error behaviour of partitioned linearly implicit Runge-Kutta methods for stiff and differential-algebraic systems. BIT,30, 358–375Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Arnold
    • 1
  • K. Strehmel
    • 2
  • R. Weiner
    • 2
  1. 1.Department of MathematicsUniversity of RostockRostockFederal Republic of Germany
  2. 2.Department of Mathematics and Computer SciencesMartin-Luther-University HalleHalleFederal Republic of Germany

Personalised recommendations