Inventiones mathematicae

, Volume 79, Issue 1, pp 49–77 | Cite as

Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences

  • A. J. Scholl
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-SwD] Atkin, A.O.L., Swinnerton-Dyer, H.P.F.: Modular forms on noncongruence subgroups. Proc. Symp. Pure Math. A.M.S. XIX, 1–25 (1971)Google Scholar
  2. [Be] Belyi, G.V.: Galois extensions of a maximal cyclotomic field. Izv. Akad. Nauk SSSR Ser. Mat.43, (no. 2) 267–276, 479 (1979)Google Scholar
  3. [B-O] Berthelot, P., Ogus, A.: Notes on crystalline cohomology. Princeton: Princeton University Press 1978Google Scholar
  4. [C] Cartier, P.: Groupes formels, fonctions automorphes et fonctions zêta des courbes elliptiques. Actes, 1970 Congrès Intern. Math. Tome2, 291–299 (1971)Google Scholar
  5. [D1] Deligne, P.: Formes modulaires et représentationsl-adiques. Sem. Bourbaki, éxp. 355. Lecture Notes in Mathematics, vol. 179, pp. 139–172. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  6. [D2] Deligne, P.: Courbes elliptiques: Formulaire (d'après J. Tate). Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 53–73. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  7. [D3] Deligne, P.: La conjecture de Weil I. Publ. Math. IHES37, 272–307 (1974)Google Scholar
  8. [D4] Deligne, P.: La conjecture de Weil II. Publ. Math. IHES52, 137–252 (1980)Google Scholar
  9. [D-R] Deligne, P., Rapoport, M.: Les schémas de modules des courbes elliptiques. Modular functions of one variable II. Lecture Notes in Mathematics, vol. 349, pp. 143–316. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  10. [Di] Ditters, E.J.: Sur les congruences d'atkin et de Swinnerton-Dyer. C.R. Acad. Sci. Paris Sér. A-B282, A1, A1131–A1134 (no. 19) (1972)Google Scholar
  11. [Dw1] Dwork, B.:p-adic cycles. Publ. Math. IHES37, 27–115 (1969)Google Scholar
  12. [Dw2] Dwork, B.: On Hecke polynomials. Invent. Math.12, 249–256 (1971)Google Scholar
  13. [H] Honda, T.: On the theory of commutative formal groups. J. Math. Soc. Japan22, 213–246 (1970)Google Scholar
  14. [K1] Katz, N.M.:p-adic properties of modular forms and modular schemes. Modular functions of one variable III. Lecture Notes in Mathematics, vol. 350, pp. 69–190. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. [K2] Katz, N.M.: Crystalline cohomology, Dieudonné modules and Jacobi sums. Automorphic forms, representation theory and arithmetic. Bombay: Tata Institute of Fundamental Research 1981Google Scholar
  16. [M] Monsky, P.: Formal cohomology III. Ann. of Math.93, 315–343 (1971)Google Scholar
  17. [O] Oda, T.: Formal groups attached to elliptic modular forms. Invent. Math.61, 81–102 (1980)Google Scholar
  18. [S] Scholl, A.J.: A trace formula forF-crystals. Invent. math.79, 31–48 (1985)Google Scholar
  19. [Sh] Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan10, 1–28 (1958)Google Scholar
  20. [SGA1] Séminaire de géométrie algébrique.: Revêtements étales et groupe fondamental, par A. Grothendieck. Lecture Notes in Mathematics, vol. 244. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  21. [SGA41/2] Séminaire de géométrie algébrique.: Cohomologie étale, par P. Deligne. Lecture Notes in Mathematics, vol. 569. Berlin-Heidelberg-New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. J. Scholl
    • 1
  1. 1.Mathematical InstituteOxfordEngland

Personalised recommendations