Inventiones mathematicae

, Volume 79, Issue 1, pp 11–29 | Cite as

Arithmetic on elliptic curves with complex multiplication. II

  • Joe P. Buhler
  • Benedict H. Gross
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthaud, N.: On the conjecture of Birch and Swinnerton-Dyer. Composito Math37, 209–232 (1978)Google Scholar
  2. 2.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. math.39, 223–251 (1977)Google Scholar
  3. 3.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields II. Nagoya Math J.67, 139–158 (1977)Google Scholar
  4. 4.
    Goldstein, C., Schappacher, N.: Series d'Eisenstein et fonctionsL de courbes elliptiques a multiplication complexe. Crelle J327, 184–218 (1981)Google Scholar
  5. 5.
    Gross, B.H.: Arithmetic on elliptic curves with complex multiplication. Lecture Notes in Mathematics, Vol. 776. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  6. 6.
    Gross, B.H.: On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. Conference on Fermat's Last Thm. pp. 219–236. Boston: Birkhäuser 1982Google Scholar
  7. 7.
    Gross, B.H.: Minimal models for elliptic curves with complex multiplication. Composito Math45, 155–164 (1982)Google Scholar
  8. 8.
    Gross, B.H., Lubin, J.: The Eisenstein descent onJ 0(N). Invent. math. in press (1984)Google Scholar
  9. 9.
    Manin, Y.I.: Cyclotomic fields and Modular Curves. Russian Math Surveys.26, (No. 6), 7–78 (1971)Google Scholar
  10. 10.
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math IHES47, 33–186 (1978)Google Scholar
  11. 11.
    Mazur, B., Wiles, A.: Class fields of abelian extensions ofQ. Invent. math.76, 179–330 (1984)Google Scholar
  12. 12.
    Ribet, K.: A modular construction of unramifiedp-extensions ofQp). Invent. math.34, 151–162 (1976)Google Scholar
  13. 13.
    Rohrlich, D.: On theL-functions of anonical Hecke characters of imaginary quadratic fields. Duke M. J.47, 547–557 (1980)Google Scholar
  14. 14.
    Rubin, K.: Congruences for special values ofL-functions of elliptic curves with complex multiplication. Invent. math.71, 339–364 (1983)Google Scholar
  15. 15.
    Rubin, K., Wiles, A.: Mordell-Weil groups of elliptic curves over cyclotomic fields. Conference on Fermat's Last Theorem, pp. 237–254. Boston: Birkhäuser 1982Google Scholar
  16. 16.
    Stark, H.:L-series ats=1 IV. Adv. in Math35, 197–235 (1980)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Joe P. Buhler
    • 1
  • Benedict H. Gross
    • 2
  1. 1.Department of MathematicsReed CollegePortlandUSA
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations