Advertisement

Inventiones mathematicae

, Volume 75, Issue 2, pp 273–282 | Cite as

On theμ-invariant of theΓ-transform of a rational function

  • W. Sinnott
Article

Keywords

Rational Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêtap-adiques. Invent. math.51, 29–59 (1979)Google Scholar
  2. 2.
    Ferrero, B., Washington, L.: The Iwasawa invariant μp vanishes for abelian number fields. Ann. of Math.109, 377–395 (1979)Google Scholar
  3. 3.
    Katz, N.:p-adicL-functions via moduli of elliptic curves. In: Proceedings A.M.S. Summer Institute of Alg. Geom. at Arcata, Calif., 1974Google Scholar
  4. 4.
    Katz, N.: Another look atp-adicL-functions for totally real fields. Math. Ann.255, 33–43 (1981)Google Scholar
  5. 5.
    Iwasawa, K.: Onp-adicL-functions, Ann. of Math.89, 198–205 (1969)Google Scholar
  6. 6.
    Iwasawa, K.: Lectures onp-adicL-functions, Ann. of Math. Studies 74. Princeton University Press 1972Google Scholar
  7. 7.
    Lang, S.: Cyclotomic fields. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  8. 8.
    Lang, S.: Cyclotomic fields II. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  9. 9.
    Mazur, B.: Analysep-adique. Secret Bourbaki redaction. 1973Google Scholar
  10. 10.
    Washington, L.: Introduction to Cyclotomic fields. Berlin-Heidelberg-New York: Springer 1982Google Scholar
  11. 11.
    Washington, L.: The non-p-part of the class number in a cyclotomicZ p-extension. Invent. Math.49, 87–97 (1978)Google Scholar
  12. 12.
    Lang, S.: Introduction to Modular Forms. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  13. 13.
    Friedman, E.: Ideal class groups in basic\(Z_{p_1 } \times \ldots \times Z_{p_s }\)-extensions of abelian number fields. Invent. math.65, 425–440 (1982)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. Sinnott
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations