Inventiones mathematicae

, Volume 75, Issue 2, pp 205–272

Intersection cohomology complexes on a reductive group

  • G. Lusztig
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analyse et topologie sur les espaces singuliers, I. Astérisque, vol. 100 (1982), Société Mathématique de FranceGoogle Scholar
  2. 2.
    Borho, W., MacPherson, R.: Representations des groupes de Weyl et homologie d'intersection pour les varietes nilpotentes, Comptes rendus. Acad. Sci. Paris t292, 707–710 (1981)Google Scholar
  3. 3.
    Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analyse et topologie sur les espaces singuliers, II. Astérisque, vol. 101–102 (1983), Société Mathématique de FranceGoogle Scholar
  4. 4.
    Goresky, M., MacPherson, R.: Intersection homology, II, Invent. Math.72, 77–129 (1983)Google Scholar
  5. 5.
    Hardy, G.H., Wright, E.M.: The theory of numbers. Oxford: Clarendon Press 1971Google Scholar
  6. 6.
    Lusztig, G.: Irreducible representations of finite classical groups. Invent. Math.43, 125–175 (1977)Google Scholar
  7. 7.
    Lusztig, G.: Coxeter orbits and eigensspaces of Frobenius. Invent Math.38, 101–159 (1976)Google Scholar
  8. 8.
    Lusztig, G.: On the finiteness of the number of unipotent classes. Inv. Math.34, 201–213 (1976)Google Scholar
  9. 9.
    Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. in Math.42, 169–178 (1981)Google Scholar
  10. 10.
    Lusztig, G.: Characters of reductive groups over a finite field. Ann. of Math. Studies, to appearGoogle Scholar
  11. 11.
    Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. London. Math. Soc.19, 41–52 (1979)Google Scholar
  12. 12.
    Mizuno, K.: The conjugate classes of Chevalley groups of typeE 6. J. Fac. Sci. Univ. Tokyo24, 525–563 (1977)Google Scholar
  13. 13.
    Mizuno, K.: The conjugate classes of unipotent elements of the Chevalley groups,E 7 andE 8. Tokyo J. Math.3, 391–461 (1980)Google Scholar
  14. 14.
    Shinoda, K.: The conjugacy classes of Chevalley groups of typeF 4 over finite fields of characteristic 2. J. Fac. Sci. Univ. Tokyo21, 133–159 (1974)Google Scholar
  15. 15.
    Shoji, T.: On the Springer representations of the Weyl groups of classical algebraic groups. Comm. in Alg.7, 1713–1745, 2027–2033 (1979)Google Scholar
  16. 16.
    Shoji, T.: On the Springer representations of Chevalley groups of typeF 4. Comm. in Alg.8, 409–440 (1980)Google Scholar
  17. 17.
    Spaltenstein, N.: Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, preprintGoogle Scholar
  18. 18.
    Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel. Lecture Notes in Mathematics, vol. 946. Berlin-Heidelberg-New York: SpringerGoogle Scholar
  19. 19.
    Spaltenstein, N.: Appendix. Math. Proc. Camb. Phil. Soc.92, 73–78 (1982)Google Scholar
  20. 20.
    Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math.36, 173–207 (1976)Google Scholar
  21. 21.
    Springer, T.A.: A construction of representations of Weyl groups. Invent. Math.44, 279–293 (1978)Google Scholar
  22. 22.
    Springer, T.A., Steinberg, R.: Conjugacy classes. In: Borel, A., et al.: Seminar on algebraic groups and related finite groups. Lecture Notes in Mathematics, Vol. 131. Berlin-Heidelberg-New York: SpringerGoogle Scholar
  23. 23.
    Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math., I.H.E.S., no.25, 49–80 (1965)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. Lusztig
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations