On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells
Article
- 406 Downloads
- 73 Citations
Keywords
Geometric Aspect Bruhat Cell
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [BB] Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Annals of Math.98, 480–497 (1973)Google Scholar
- [B-W] Björner, A., Wachs, M.: Bruhat order of Coxeter groups and shellability. Advances in Math.43, 87–100 (1983)Google Scholar
- [Bo] Bourbaki, N.: Groupes et algebres de Lie, Chapitre 4, 5 et 6. Paris: Hermann 1968Google Scholar
- [D1] Deodhar, V.: Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function. Invent. Math.39, 187–198 (1977)Google Scholar
- [D2] Deodhar, V.: On the root system of a Coxeter group. Commu. in Alg.10 (6), 611–630 (1982)Google Scholar
- [D3] Deodhar, V.: On the Kazhdan-Lusztig conjectures. Proc. of Koni. Neder. Aka. van Weten., Amsterdam, Series A,85, 1–17 (1982)Google Scholar
- [G] Garland, H.: The arithmetic theory of loop groups. Publ. Math. I.H.E.S.52, 5–136 (1980)Google Scholar
- [H] Haddad, Z.: Infinite dimensional flag varieties. Thesis, M.I.T., 1984Google Scholar
- [K-P] Kac, V., Peterson, D.: Infinite flag varieties and conjugacy theorems. Proc. Nat. Acad. Sci. USA80, 1778–1782 (1983)Google Scholar
- [K-L1] Kazhdan, D., Lusztig, G.: Representation of coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979)Google Scholar
- [K-L2] Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. Pure Math. of A.M.S.36, 185–203 (1980)Google Scholar
- [Ke] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embedding I. Lectures Notes in Math., vol. 339. Berlin-Heidelberg-New York: Springer 1973Google Scholar
- [L] Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Invent. Math.38, 101–159 (1976)Google Scholar
- [M-T] Moody, R., Teo, K.: Tits' systems with crystallographic Weyl groups. J. of Alg.21, 178–190 (1972)Google Scholar
- [S1] Slodowy, P.: A character approach to Looijenga's invariant theory for generalized root systems. PreprintGoogle Scholar
- [Sta] Stanley, R.: Interactions between commutative algebra and combinatorics. Report No. 4, Univ. of Stockholm (1982)Google Scholar
- [Ste] Steinberg, R.: Lectures on Chevalley groups. Mimeo. notes, Yale Univ. (1967)Google Scholar
- [T1] Tits, J.: Resumé de Cours, Annuaire du Collège de France 1980–81, ParisGoogle Scholar
- [T2] Tits, J.: Définition par générateurs et relations de groupes avec BN-pairs. C.R. Acad. Sc. Paris293, 317–322 (1981)Google Scholar
Copyright information
© Springer-Verlag 1985