Advertisement

Inventiones mathematicae

, Volume 79, Issue 3, pp 499–511 | Cite as

On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells

  • Vinay V. Deodhar
Article

Keywords

Geometric Aspect Bruhat Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB] Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Annals of Math.98, 480–497 (1973)Google Scholar
  2. [B-W] Björner, A., Wachs, M.: Bruhat order of Coxeter groups and shellability. Advances in Math.43, 87–100 (1983)Google Scholar
  3. [Bo] Bourbaki, N.: Groupes et algebres de Lie, Chapitre 4, 5 et 6. Paris: Hermann 1968Google Scholar
  4. [D1] Deodhar, V.: Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function. Invent. Math.39, 187–198 (1977)Google Scholar
  5. [D2] Deodhar, V.: On the root system of a Coxeter group. Commu. in Alg.10 (6), 611–630 (1982)Google Scholar
  6. [D3] Deodhar, V.: On the Kazhdan-Lusztig conjectures. Proc. of Koni. Neder. Aka. van Weten., Amsterdam, Series A,85, 1–17 (1982)Google Scholar
  7. [G] Garland, H.: The arithmetic theory of loop groups. Publ. Math. I.H.E.S.52, 5–136 (1980)Google Scholar
  8. [H] Haddad, Z.: Infinite dimensional flag varieties. Thesis, M.I.T., 1984Google Scholar
  9. [K-P] Kac, V., Peterson, D.: Infinite flag varieties and conjugacy theorems. Proc. Nat. Acad. Sci. USA80, 1778–1782 (1983)Google Scholar
  10. [K-L1] Kazhdan, D., Lusztig, G.: Representation of coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979)Google Scholar
  11. [K-L2] Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. Pure Math. of A.M.S.36, 185–203 (1980)Google Scholar
  12. [Ke] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embedding I. Lectures Notes in Math., vol. 339. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  13. [L] Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Invent. Math.38, 101–159 (1976)Google Scholar
  14. [M-T] Moody, R., Teo, K.: Tits' systems with crystallographic Weyl groups. J. of Alg.21, 178–190 (1972)Google Scholar
  15. [S1] Slodowy, P.: A character approach to Looijenga's invariant theory for generalized root systems. PreprintGoogle Scholar
  16. [Sta] Stanley, R.: Interactions between commutative algebra and combinatorics. Report No. 4, Univ. of Stockholm (1982)Google Scholar
  17. [Ste] Steinberg, R.: Lectures on Chevalley groups. Mimeo. notes, Yale Univ. (1967)Google Scholar
  18. [T1] Tits, J.: Resumé de Cours, Annuaire du Collège de France 1980–81, ParisGoogle Scholar
  19. [T2] Tits, J.: Définition par générateurs et relations de groupes avec BN-pairs. C.R. Acad. Sc. Paris293, 317–322 (1981)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Vinay V. Deodhar
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations