Inventiones mathematicae

, Volume 79, Issue 3, pp 443–465 | Cite as

On modules over the Hecke algebra of ap-adic group

  • J. D. Rogawski


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jantzen, C.: Moduln mit einem höchsten Gewicht. Lecture Notes in Mathematics, vol. 750. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  2. 2.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. math.53, 165–184 (1979)Google Scholar
  3. 3.
    Knuth, D.E.: The art of computer programming. Reading, MA: Addison-Wesley 1975Google Scholar
  4. 4.
    Lusztig, G.: On a theorem of Benson and Curtis. J. Algebra71, 490–498 (1981)Google Scholar
  5. 5.
    Lusztig, G.: Some examples of square-integrable representations of semisimplep-adic groups. Trans. Amer. Math. Soc.277, 623–653 (1983)Google Scholar
  6. 6.
    Lusztig, G.: Cells in Affine Weyl Groups. PreprintGoogle Scholar
  7. 7.
    Rodier, F.: Decomposition de la série principale des groups reductifsp-adiques, in Noncommutative Harmonic Analysis and Lie Groups. Lecture Notes in Mathematics, vol. 880. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  8. 8.
    Zelevinsky, A.: Induced representations of reductivep-adic groups II. Ann. Sci. Ecole Norm. Sup., 4e Serie13, (No. 2) 165–210 (1980)Google Scholar
  9. 9.
    Zelevinsky, A.:p-adic analogue of the Kazhdan-Lusztig Hypothesis. Functional An. Appl.15, 83–92 (1981)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. D. Rogawski
    • 1
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations